961 resultados para Hypoxic ischaemic encephaolpathy
Resumo:
Sustained hypoxia alters the expression of numerous proteins and predisposes individuals to Alzheimer's disease (AD). We have previously shown that hypoxia in vitro alters Ca2+ homeostasis in astrocytes and promotes increased production of amyloid beta peptides (Abeta) of AD. Indeed, alteration of Ca2+ homeostasis requires amyloid formation. Here, we show that electrogenic glutamate uptake by astrocytes is suppressed by hypoxia (1% O2, 24h) in a manner that is independent of amyloid beta peptide formation. Thus, hypoxic suppression of glutamate uptake and expression levels of glutamate transporter proteins EAAT1 and EAAT2 were not mimicked by exogenous application of amyloid beta peptide, or by prevention of endogenous amyloid peptide formation (using inhibitors of either beta or gamma secretase). Thus, dysfunction in glutamate homeostasis in hypoxic conditions is independent of Abeta production, but will likely contribute to neuronal damage and death associated with AD following hypoxic events.
Resumo:
Glutamate uptake by astrocytes is fundamentally important in the regulation of CNS function. Disruption of uptake can lead to excitotoxicity and is implicated in various neurodegenerative processes as well as a consequence of hypoxic/ischemic events. Here, we investigate the effect of hypoxia on activity and expression of the key glutamate transporters excitatory amino acid transporter 1 (EAAT1) [GLAST (glutamate-aspartate transporter)] and EAAT2 [GLT-1 (glutamate transporter 1)]. Electrogenic, Na+-dependent glutamate uptake was monitored via whole-cell patch-clamp recordings from cortical astrocytes. Under hypoxic conditions (2.5 and 1% O2 exposure for 24 h), glutamate uptake was significantly reduced, and pharmacological separation of uptake transporter subtypes suggested that the EAAT2 subtype was preferentially reduced relative to the EAAT1. This suppression was confirmed at the level of EAAT protein expression (via Western blots) and mRNA levels (via real-time PCR). These effects of hypoxia to inhibit glutamate uptake current and EAAT protein levels were not replicated by desferrioxamine, cobalt, FG0041, or FG4496, agents known to mimic effects of hypoxia mediated via the transcriptional regulator, hypoxia-inducible factor (HIF). Furthermore, the effects of hypoxia were not prevented by topotecan, which prevents HIF accumulation. In stark contrast, inhibition of nuclear factor-kappaB (NF-kappaB) with SN50 fully prevented the effects of hypoxia on glutamate uptake and EAAT expression. Our results indicate that prolonged hypoxia can suppress glutamate uptake in astrocytes and that this effect requires activation of NF-kappaB but not of HIF. Suppression of glutamate uptake via this mechanism may be an important contributory factor in hypoxic/ischemic triggered glutamate excitotoxicity.
Resumo:
Aim To develop a brief, parent-completed instrument (‘ERIC’) for detection of cognitive delay in 10-24 month-olds born preterm, or with low birth weight, or with perinatal complications, and to establish its diagnostic properties. Method Scores were collected from parents of 317 children meeting ≥1 inclusion criteria (birth weight <1500g; gestational age <34 completed weeks; 5-minute Apgar <7; presence of hypoxic-ischemic encephalopathy) and meeting no exclusion criteria. Children were assessed for cognitive delay using a criterion score on the Bayley Scales of Infant and Toddler Development Cognitive Scale III1 <80. Items were retained according to their individual associations with delay. Sensitivity, specificity, Positive and Negative Predictive Values were estimated and a truncated ERIC was developed for use <14 months. Results ERIC detected 17 out of 18 delayed children in the sample, with 94.4% sensitivity (95% CI [confidence interval] 83.9-100%), 76.9% specificity (72.1-81.7%), 19.8% positive predictive value (11.4-28.2%); 99.6% negative predictive value (98.7-100%); 4.09 likelihood ratio positive; and 0.07 likelihood ratio negative; the associated Area under the Curve was .909 (.829-.960). Interpretation ERIC has potential value as a quickly-administered diagnostic instrument for the absence of early cognitive delay in preterm or premature infants of 10-24 months, and as a screen for cognitive delay. Further research may be needed before ERIC can be recommended for wide-scale use.
Resumo:
Adenosine and mitogen-activated protein kinases (MAPKs) have been separately implicated in cardiac ischaemic preconditioning. We investigated the activation of MAPK subfamilies by adenosine in perfused rat hearts. p38-MAPK was rapidly phosphorylated and activated (10-fold activation, maximal at 5 min) by 10 mM adenosine, as was the p38-MAPK substrate, MAPKAPK2 (4.5-fold). SAPKs/JNKs were activated (5-fold) and ERKs were phosphorylated (both maximal at 5 min). The concentration dependences of activation of p38-MAPK and ERKs were biphasic with a 'high affinity' component (maximal at 10-100 microM adenosine) and a 'low affinity' component that had not saturated at 10 mM. SAPKs/JNKs were activated only by 10 mM adenosine. These results are consistent with MAPK involvement in adenosine-mediated ischaemic preconditioning.
Resumo:
P>1. Impairmant of baroreflex sensitivity (BRS) has been implicated in the reduction of heart rate variability (HRV) and in the increased risk of death after myocardial infarction (MI). In the present study, we investigated whether the additional impairment in BRS induced by sinoaortic baroreceptor denervation (SAD) in MI rats is associated with changes in the low-frequency (LF) component of HRV and increased mortality rate. 2. Rats were randomly divided into four groups: control, MI, denervated (SAD) and SAD + MI rats. Left ventricular (LV) function was evaluated by echocardiography. Autonomic components were assessed by power spectral analysis and BRS. 3. Myocardial infarction (90 days) reduced ejection fraction (by similar to 42%) in both the MI and SAD + MI groups; however, an increase in LV mass and diastolic dysfunction were observed only in the SAD + MI group. Furthermore, BRS, HRV and the LF power of HRV were reduced after MI, with an exacerbated reduction seen in SAD + MI rats. The LF component of blood pressure variability (BPV) was increased in the MI, SAD and SAD + MI groups compared with the control group. Mortality was higher in the MI groups compared with the non-infarcted groups, with an additional increase in mortality in the SAD + MI group compared with the MI group. Correlations were obtained between BRS and the LF component of HRV and between LV mass and the LF component of BPV. 4. Together, the results indicate that the abolishment of BRS induced by SAD in MI rats further reduces the LF band of HRV, resulting in a worse cardiac remodelling and increased mortality in these rats. These data highlight the importance of this mechanism in the prognosis of patients after an ischaemic event.
Resumo:
Exposure to a high glucose medium or diabetes has been found to protect the heart against ischaemia. The activation of antiapoptotic and proliferative factors seems to be involved in this cardioprotection. This study was designed to evaluate the role of hyperglycaemia in cardiac function, programmed cell survival, and cell death in diabetic rats after myocardial infarction (MI). Male Wistar rats were divided into four groups (n = 8): control (C), diabetic (D), myocardial infarcted (MI), and diabetic myocardial infarcted (DI). The following measures were assessed in the left ventricle: size of MI, systolic and diastolic function by echocardiography, cytokines by ELISA (TNF-alpha, IL-1 beta, IL-6, and IL-10), gene expression by real-time PCR (Bax, Fas, p53, Bcl-2, HIF1-alpha, VEGF, and IL8r), caspase-3 activity by spectrofluorometric assay, glucose transporter type 1 and 4 (GLUT-1 and GLUT-4) protein expression by western blotting, and capillary density and fibrosis by histological analysis. Systolic function was improved by hyperglycaemia in the DI group, and this was accompanied by no improvement in diastolic dysfunction, a reduction of 36% in MI size, reduced proinflammatory cytokines, apoptosis activation, and an increase in cell survival factors (HIF1-alpha, VEGFa and IL8r) assessed 15 days post-MI. Moreover, hyperglycaemia resulted in angiogenesis (increased capillary density) before and after MI, accompanied by a reduction in fibrosis. Together, these results suggest that greater plasticity and cellular resistance to ischaemic injury result from chronic diabetic hyperglycaemia in rat hearts.
Resumo:
Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly down-regulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1 alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.
Resumo:
A participação de marcadores bioquímicos na avaliação de quadros de asfixia neonatal é cada vez mais relevante. A proteína S100B tem um papel destacado nestas pesquisas. O objetivo deste estudo foi procurar destacar a importância da proteína S100B na avaliação de recém-nascidos a termo com quadros de encefalopatia hipóxico-isquêmica, assim como correlacionar com outras substâncias que também participam do processo isquêmico. Foram analisados 21 casos de recém-nascidos a termo que desenvolveram quadro de encefalopatia hipóxico-isquêmica, no período de setembro de 2003 a outubro de 2004. Realizadas coletas no 1º e 4º dia de vida e dosadas, por método imunocitoquímico, a proteína S100B e o lactato. Foi possível detectar uma correlação positiva entre as 2 substâncias, assim como, quando comparadas entre si, observou-se também significância estatística.
Resumo:
Hypoxia causes a regulated decrease in body temperature (Tb). There is circumstantial evidence that the neurotransmitter serotonin (5-HT) in the anteroventral preoptic region (AVPO) mediates this response. However, which 5-HT receptor(s) is (are) involved in this response has not been assessed. Thus, we investigated the participation of the 5-HT receptors (5-HT(1), 5-HT(2), and 5-HT(7)) in the AVPO in hypoxic hypothermia. To this end, Tb of conscious Wistar rats was monitored by biotelemetry before and after intra-AVPO microinjection of methysergide (a 5-HT(1) and 5-HT(2) receptor antagonist, 0.2 and 2 mu g/100 nL), WAY-100635 (a 5-HT(1A) receptor antagonist, 0.3 and 3 mu g/100 nL), and SB-269970 (a 5-HT(7) receptor antagonist, 0.4 and 4 mu/100 nL), followed by 60 min of hypoxia exposure (7% O(2)). During the experiments, the mean chamber temperature was 24.6 +/- 0.7 degrees C (mean +/- SE) and the mean room temperature was 23.5 +/- 0.8 degrees C (mean +/- SE). Intra-AVPO microinjection of vehicle or 5-HT antagonists did not change Tb during normoxic conditions. Exposure of rats to 7% of inspired oxygen evoked typical hypoxia-induced hypothermia after vehicle microinjection, which was not affected by both doses of methysergide. However, WAY-100635 and SB-269970 treatment attenuated the drop in Tb in response to hypoxia. The effect was more pronounced with the 5-HT7 antagonist since both doses (0.4 and 4 mu g/0.1 mu L) were capable of attenuating the hypothermic response. As to the 5-HT(1A) antagonist, the attenuation of hypoxia-induced hypothermia was only observed at the higher dose. Therefore, the present results are consistent with the notion that 5-HT acts on both 5-HT(1A) and 5-HT7 receptors in the AVPO to induce hypothermia, during hypoxia. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Despite recent advances, the mechanisms of neurorespiratory control in amphibians are far from understood. One of the brainstem structures believed to play a key role in the ventilatory control of anuran amphibians is the nucleus isthmi (NI). This nucleus is a mesencephalic structure located between the roof of the midbrain and the cerebellum, which differentiates during metamorphosis; the period when pulmonary ventilation develops in bullfrogs. It has been recently suggested that the NI acts to inhibit hypoxic and hypercarbic drives in breathing by restricting increases in tidal volume. This data is similar to the influence of two pontine structures of mammals, the locus coeruleus and the nucleus raphe magnus. The putative mediators for this response are glutamate and nitric oxide. Microinjection of kynurenic acid (an ionotropic receptor antagonist of excitatory amino acids) and L-NAME (a non-selective NO synthase inhibitor) elicited increases in the ventilatory response to hypoxia and hypercarbia. This article reviews the available data on the role of the NI in the control of ventilation in amphibians. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A formação de aerênquimas é conhecida como uma das mais importantes adaptações anatômicas pelas quais as plantas passam quando são submetidas à deficiência de oxigênio. Esse tecido se desenvolve pela ação de enzimas de degradação ou afrouxamento da parede celular. Este trabalho foi conduzido com o objetivo de verificar o desenvolvimento de aerênquima em plântulas de milho cv. Saracura- BRS 4154, submetidas à hipoxia. Associou-se, ao desenvolvimento dessa estrutura, a atividade da celulase. Para tanto, plântulas com 4 dias de idade foram submetidas aos tratamentos de hipoxia, pela imersão em tampão de alagamento, na ausência e presença de cálcio. Após 0, 1, 2, 3 e 4 dias da aplicação dos tratamentos, foram feitos cortes anatômicos na região apical dos coleóptiles e na região intermediária da raiz para a avaliação da formação de aerênquimas, e coletado o material para os ensaios enzimáticos de celulase. A atividade celulase foi medida através de método viscosimétrico. Nas raízes, a formação de aerênquima aumentou logo após a hipoxia e atingiu 50% do total do córtex ao quarto dia de hipoxia. Este órgão apresentou uma área cortical com aerênquima em média sete vezes maior que nos coleóptiles, onde a área de espaços intercelulares atingiu 15% do córtex. A atividade da celulase em coleóptiles e raízes sofreu, inicialmente, um decréscimo devido ao estresse, aumentando em seguida, acompanhando os resultados de aerênquima. Na presença de cálcio o desenvolvimento de aerênquima foi inibido; no entanto, a atividade enzimática foi induzida.
Resumo:
A carnitina, uma amina quaternária (3-hidroxi-4-N-trimetilamino-butirato), é sintetizada no organismo (fígado, rins e cérebro) a partir de dois aminoácidos essenciais: lisina e metionina, exigindo para sua síntese a presença de ferro, ácido ascórbico, niacina e vitamina B6. Tem função fundamental na geração de energia pela célula, pois age nas reações transferidoras de ácidos graxos livres do citosol para mitocôndrias, facilitando sua oxidação e geração de adenosina Trifosfato. A concentração orgânica de carnitina é resultado de processos metabólicos - como ingestão, biossíntese, transporte dentro e fora dos tecidos e excreção - que, quando alterados em função de diversas doenças, levam a um estado carencial de carnitina com prejuízos relacionados ao metabolismo de lipídeos. A suplementação de L-carnitina pode aumentar o fluxo sangüíneo aos músculos devido também ao seu efeito vasodilatador e antioxidante, reduzindo algumas complicações de doenças isquêmicas, como a doença arterial coronariana, e as conseqüências da neuropatia diabética. Por esse motivo, o objetivo do presente trabalho foi descrever possíveis benefícios da suplementação de carnitina nos indivíduos com necessidades especiais e susceptíveis a carências de carnitina, como os portadores de doenças renais, neuropatia diabética, síndrome da imunodefeciência adquirida e doenças cardiovasculares.