543 resultados para Hydrogel*
Resumo:
We report on the development of an ultraviolet curable hydrogel, based on combinations of poly(ethylene glycol) dimethacrylate (PEGMA), acrylic acid (AA) and N-Isopropylacrylamide (NIPPAm) for imprint lithography processes. The hydrogel was successfully imprinted to form dynamic microlens arrays. The response rate of the microlenses by volume change to water absorption was studied optically showing tunable focalisation of the light. Important optical refractive index change was measured between the dry and wet state of the microlenses. Our work suggests the use of this newly developed printable hydrogel for various imprinted components for sensing and imaging systems. © 2013 Elsevier B.V. All rights reserved.
Resumo:
This thesis is concerned with the investigation of transition metal (TM) ion complexation with hydrophilic membranes composed of copolymers of 4-vinyl pyridine & 4-methyl-4'vinyl- 2,2'-bipyridine with 2-hydroxyethyl methacrylate. The Cu(II), CoCII) & Fe(II) complexes with these coordinating membranes were characterised by a variety of techniques, in order to assess the effect of the polymer on the properties of the complex, and vice versa. A detailed programme of work was instigated into the kinetics of formation for the polymer-bound tris(bipyridyl) iron(II) complex; the rate and extent of complex formation was found to be anion-dependent. This is explained in terms of the influence of the anion on the transport properties and water content of the membrane, the controlling factor in the development of the tris-complex being the equilibrium concentration of Fe(II) in the gel matrix. A series of transport studies were performed with a view to the potential application of complexing hydrogel membranes for aqueous TM ion separations. A number of salts were studied individually and shown to possess a range of permeabilities; the degree of interaction between particular metal-ion:ligand combinations is given by the lag-time observed before steady-state permeation is achieved. However, when two TM salts that individually display different transport properties were studied in combination, they showed similar lag-times & permeabilities, characteristic of the more strongly coordinating metal ion. This 'anti-selective' nature thus renders the membrane systems unsuitable for TM ion separations. Finally, attempts were made to synthesise and immobilise a series of N ,0-donor macrocyclic ligands into hydrogel membranes. Although the functionalisation reactions failed, limited transport data was obtained from membranes in which the ligands were physically entrapped within the polymer matrix.
Resumo:
A pH-responsive ABA triblock copolymer, comprising poly(methyl methacrylate)-b/ock-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) [PMMA-b-PDEA-b-PMMA], has been cast Into thin films with a well-defined microstructure. Small Angle X-ray Scattering (SAXS) and Atomic Force Microscopy (AFM) studies confirm that this copolymer forms a hydrogel consisting of PMMA spheres embedded within a polybase PDEA matrix, with the PMMA domains acting as physical cross-links. The hydrogel has a pH-reversible coil-globule transition at around pH 4.5. This responsive physical property was exploited by immersing a sample of copolymer hydrogel in an aqueous solution containing a cyclic pH-oscillating reaction, whereby the pH was continuously oscillated above and below the transition pH so as to induce autonomous volume transitions. The changes in microscopic and macroscopic length scales correlate closely during (de)swelling cycles, with affine behaviour occurring over five orders of magnitude. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA,.
Resumo:
Welcome to the latest issue of Contact Lens and Anterior Eye. In this issue, Kuldeep Razaida provides a fascinating look at fitting prosthetic lenses to patients in India. I had the good fortune of visiting his clinic in August 2006 at the LV Prasad Eye Institute in Hyderabad, India and was humbled by the vast expertise within the one building. The institute started in 1987 and is the brainchild of the infamous Professor Rao. I think there are few such places in the world where the clinicians work so passionately in treating such interesting patients (for details regarding the LV Prasad Eye Institute see www.lvpei.org). I was in Hyderabad courtesy of IACLE (see issue 29:5 for an editorial by Judith Morris and Sonja Cronje about IACLE) and was able to share ideas with contact lens educators from across the world (for more information on IACLE see www.iacle.org). The issue contains some regular contact lens type papers too; with our aging population readers will be particularly interested in a paper by Mike Freeman and Neil Charman looking at modified monovision with diffractive bifocal lenses. There is an article looking at visual problems with video display terminal use and a study looking at the effects of surface treatment of silicone hydrogel contact lenses. There is an interesting piece from Dr Aisling Mann of Aston University looking at tear protein analysis; this article contains one CET point too for readers who complete the attached multiple choice questions before the relevant deadline. Also, congratulations to the BCLA members who successfully undertook the Fellowship of the BCLA at this year's BCLA conference in Manchester. If you are interested in undertaking the Fellowship please look at the details on the BCLA web page (http://www.bcla.org.uk/fellowship.asp). Amongst the case reports in this issue of CLAE you will notice one from Andrew Elder-Smith, this particular case report was presented as part of his successful Fellowship submission in 2006 and was thought to be of particular good quality by the examiners who asked Andrew to kindly submit it for publication to Contact Lens and Anterior Eye as an example for potential candidates. Finally, it is my sad duty to report the death of Howard Gee earlier this year, a past council member of the BCLA. Our thoughts and prayers are with his family and friends.
Resumo:
Progress in the development of actuating molecular devices based on responsive polymers is reviewed. The synthesis and characterization of "grafted from brushes and triblock copolymers is reported. The responsive nature of polyelectrolyte brushes, grown by surface initiated atomic transfer radical polymerization (ATRP), has been characterized by scanning force microscopy, neutron reflectometry, and single molecule force measurements. The molecular response is measured directly for the brushes in terms of both the brush height and composition and the force generated by a single molecule. Triblock copolymers, based on hydrophobic end blocks and polyacid midblock, have been used to produce polymer gels where the deformation of the molecules can be followed directly by small angle Xray scattering (SAXS), and a correlation between molecular shape change and macroscopic deformation has been established. A Landolt pHoscillator, based on bromate/sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1
Resumo:
Aim: To determine the dynamic emitted temperature changes of the anterior eye during and immediately after wearing different materials and modalities of soft contact lenses. Method: A dynamic, non-contact infrared camera (Thermo-Tracer TH7102MX, NEC San-ei) was used to record the ocular surface temperature (OST) in 48 subjects (mean age 21.7 ± 1.9 years) wearing: lotrafilcon-A contact lenses on a daily wear (LDW; n = 8) or continuous wear (LCW; n = 8) basis; balafilcon-A contact lenses on a daily wear (BDW; n = 8) or continuous wear (BCW; n = 8) basis; etafilcon-A contact lenses on a daily disposable regimen (EDW; n = 8); and no lenses (controls; n = 8). OST was measured continuously five times, for 8 s after a blink, following a minimum of 2 h wear and immediately following lens removal. Absolute temperature, changes in temperature post-blink and the dynamics of temperature changes were calculated. Results: OST immediately following contact lens wear was significantly greater compared to non-lens wearers (37.1 ± 1.7 °C versus 35.0 ± 1.1 °C; p < 0.005), predominantly in the LCW group (38.6 ± 1.0 °C; p < 0.0001). Lens surface temperature was highly correlated (r = 0.97) to, but lower than OST (by -0.62 ± 0.3 °C). There was no difference with modality of wear (DW 37.5 ± 1.6 °C versus CW 37.8 ± 1.9 °C; p = 0.63), but significant differences were found between etafilcon A and silicone hydrogel lens materials (35.3 ± 1.1 °C versus 37.5 ± 1.5 °C; p < 0.0005). Ocular surface cooling following a blink was not significantly affected by contact lens wear with (p = 0.07) or without (p = 0.47) lenses in situ. Conclusions: Ocular surface temperature is greater with hydrogel and greater still with silicone hydrogel contact lenses in situ, regardless of modality of wear. The effect is likely to be due to the thermal transmission properties of a contact lens. © 2004 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Resumo:
Progress in the development of generic molecular devices based on responsive polymers is discussed. Characterisation of specially synthesised polyelectrolyte gels, "grafted from" brushes and triblock copolymers is reported. A Landolt pH-oscillator, based on bromate/ sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1
Resumo:
Aim: To examine the academic literature on the grading of corneal transparency and to assess the potential use of objective image analysis. Method: Reference databases of academic literature were searched and relevant manuscripts reviewed. Annunziato, Efron (Millennium Edition) and Vistakon-Synoptik corneal oedema grading scale images were analysed objectively for relative intensity, edges detected, variation in intensity and maximum intensity. In addition, corneal oedema was induced in one subject using a low oxygen transmissibility (Dk/t) hydrogel contact lens worn for 3 hours under a light eye patch. Recovery from oedema was monitored over time using ultrasound pachymetry, high and low contrast visual acuity measures, bulbar hyperaemia grading and transparency image analysis of the test and control eyes. Results: Several methods for assessing corneal transparency are described in the academic literature, but none have gained widespread in clinical practice. The change in objective image analysis with printed scale grade was best described by quadratic parametric or sigmoid 3-parameter functions. ‘Pupil image scales’ (Annunziato and Vistakon-Synoptik) were best correlated to average intensity; however, the corneal section scale (Efron) was strongly correlated to variations in intensity. As expected, patching an eye wearing a low Dk/t hydrogel contact lens caused a significant (F=119.2, P<0.001) 14.3% increase in corneal thickness, which gradually recovered under open eye conditions. Corneal section image analysis was the most affected parameter and intensity variation across the slit width, in isolation, was the strongest correlate, accounting for 85.8% of the variance with time following patching, and 88.7% of the variance with corneal thickness. Conclusion: Corneal oedema is best determined objectively by the intensity variation across the width of a corneal section. This can be easily measured using a slit-lamp camera connected to a computer. Oedema due to soft contact lens wear is not easily determined over the pupil area by sclerotic scatter illumination techniques.
Resumo:
As we welcome 2014 we say goodbye to 2013 and I must start with an apology to authors who have submitted papers to CLAE and seen a delay in either the review process or the hard copy publication of their proofed article. The delays were caused by a major hike in the number of submissions to the journal in 2012 that increased further in 2013. In the 12 months leading to the end of October 2011 we had 94 new paper submissions, and for the same period to the end of 2012 the journal had 116 new papers. In 2012 we were awarded an impact factor for the first time and following that the next 12 month period to the end of October 2013 saw a massive increase in submissions with 171 new manuscripts being submitted. This is nearly twice as many papers as 2 years ago and 3 times as many as when I took over as Editor-in-Chief. In addition to this the UK academics will know that 2014 is a REF year (Research Excellence Framework) where universities are judged on their research and one of the major components of this measure remains to be published papers so there is a push to publishing before the REF deadline for counting. The rejection rate at CLAE has gone up too and currently is around 50% (more than double the rejection rate when I took over as Editor-in-Chief). At CLAE the number of pages that we publish each year has remained the same since 2007. When compiling issue 1 for 2014 I chose the papers to be included from the papers that were proofed and ready to go and there were around 200 proofed pages ready, which is enough to fill 3½ issues! At present Elsevier and the BCLA are preparing to increase the number the pages published per issue so that we can clear some of this backlog and remain up to date with the papers published in CLAE. I should add that on line publishing of papers is still available and there may have been review delays but there are no publishing online so authors can still get an epub on line final version of their paper with a DOI (digital object identifier) number enabling the paper to be cited. There are two awards that were made in 2013 that I would like to make special mention of. One was for my good friend Jan Bergmanson, who was awarded an honorary life fellowship of the College of Optometrists. Jan has served on the editorial board of CLAE for many years and in 2013 also celebrated 30 years of his annual ‘Texan Corneal and contact lens meeting’. The other award I wish to mention is Judith Morris, who was the BCLA Gold Medal Award winner in 2013. Judith has had many roles in her career and worked at Moorfields Eye Hospital, the Institute of Optometry and currently at City University. She has been the Europe Middle East and Africa President of IACLE (International Association of Contact Lens Educators) for many years and I think I am correct in saying that Judith is the only person who was President of both the BCLA (1983) and a few years later she was the President College of Optometrists (1989). Judith was also instrumental in introducing Vivien Freeman to the BCLA as they had been friends and Judith suggested that Vivien apply for an administrative job at the BCLA. Fast forward 29 years and in December 2013 Vivien stepped down as Secretary General of the BCLA. I would like to offer my own personal thanks to Vivien for her support of CLAE and of me over the years. The BCLA will not be the same and I wish you well in your future plans. But 2014 brings in a new position to the BCLA – Cheryl Donnelly has been given the new role of Chief Executive Officer. Cheryl was President of the BCLA in 2000 and has previously served on council. I look forward to working with Cheryl and envisage a bright future for the BCLA and CLAE. In this issue we have some great papers including some from authors who have not published with CLAE before. There is a nice paper on contact lens compliance in Nepal which brings home some familiar messages from an emerging market. A paper on how corneal curvature is affected by the use of hydrogel lenses is useful when advising patients how long they should leave their contact lenses out for to avoid seeing changes in refraction or curvature. This is useful information when refracting these patients or pre-laser surgery. There is a useful paper offering tips on fitting bitoric gas permeable lenses post corneal graft and a paper detailing surgery to implant piggyback multifocal intraocular lenses. One fact that I noted from the selection of papers in the current issue is where they were from. In this issue none of the corresponding authors are from the United Kingdom. There are two papers each from the United States, Spain and Iran, and one each from the Netherlands, Ireland, Republic of Korea, Australia and Hong Kong. This is an obvious reflection of the widening interest in CLAE and the BCLA and indicates the new research groups emerging in the field.
Resumo:
The literature suggests that diabetic patients may have altered tear chemistry and tear secretion as well as structural and functional changes to the corneal epithelium, endothelium and nerves. These factors, together with a reported increased incidence of corneal infection, suggest that diabetic patients may be particularly susceptible to developing ocular complications during contact lens wear. Reports of contact lens-induced complications in diabetic patients do exist, although a number of these reports concern patients with advanced diabetic eye disease using lenses on an extended wear basis. Over the past decade or so, there have been published studies documenting the response of the diabetic eye to more modern contact lens modalities. The results of these studies suggest that contact lenses can be a viable mode of refractive correction for diabetic patients. Furthermore, new research suggests that the measurement of tear glucose concentration could, in future, be used to monitor metabolic control non-invasively in diabetic patients. This could be carried out using contact lenses manufactured from hydrogel polymers embedded with glucose-sensing agents or nanoscale digital electronic technology. The purpose of this paper is to review the literature on the anterior ocular manifestations of diabetes, particularly that pertaining to contact lens wear. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.
Resumo:
Presbyopia is a consequence of ageing and is therefore increasing inprevalence due to an increase in the ageing population. Of the many methods available to manage presbyopia, the use of contact lenses is indeed a tried and tested reversible option for those wishing to be spectacle free. Contact lens options to correct presbyopia include multifocal contact lenses and monovision.Several options have been available for many years with available guides to help choose multifocal contact lenses. However there is no comprehensive way to help the practitioner selecting the best option for an individual. An examination of the simplest way of predicting the most suitable multifocal lens for a patient will only enhance and add to the current evidence available. The purpose of the study was to determine the current use of presbyopic correction modalities in an optometric practice population in the UK and to evaluate and compare the optical performance of four silicone hydrogel soft multifocal contact lenses and to compare multifocal performance with contact lens monovision. The presbyopic practice cohort principal forms of refractive correction were distance spectacles (with near and intermediate vision providedby a variety of other forms of correction), varifocal spectacles and unaided distance with reading spectacles, with few patients wearing contact lenses as their primary correction modality. The results of the multifocal contact lens randomised controlled trial showed that there were only minor differences in corneal physiology between the lens options. Visual acuity differences were observed for distance targets, but only for low contrast letters and under mesopic lighting conditions. At closer distances between 20cm and 67cm, the defocus curves demonstrated that there were significant differences in acuity between lens designs (p < 0.001) and there was an interaction between the lens design and the level of defocus (p < 0.001). None of the lenses showed a clear near addition, perhaps due to their more aspheric rather than zoned design. As expected, stereoacuity was reduced with monovision compared with the multifocal contact lens designs, although there were some differences between the multifocal lens designs (p < 0.05). Reading speed did not differ between lens designs (F = 1.082, p = 0.368), whereas there was a significant difference in critical print size (F = 7.543, p < 0.001). Glare was quantified with a novel halometer and halo size was found to significantly differ between lenses(F = 4.101, p = 0.004). The rating of iPhone image clarity was significantly different between presbyopic corrections (p = 0.002) as was the Near Acuity Visual Questionnaire (NAVQ) rating of near performance (F = 3.730, p = 0.007).The pupil size did not alter with contact lens design (F = 1.614, p = 0.175), but was larger in the dominant eye (F = 5.489, p = 0.025). Pupil decentration relative to the optical axis did not alter with contact lens design (F = 0.777, p =0.542), but was also greater in the dominant eye (F = 9.917, p = 0.003). It was interesting to note that there was no difference in spherical aberrations induced between the contact lens designs (p > 0.05), with eye dominance (p > 0.05) oroptical component (ocular, corneal or internal: p > 0.05). In terms of subjective patient lens preference, 10 patients preferred monovision,12 Biofinity multifocal lens, 7 Purevision 2 for Presbyopia, 4 AirOptix multifocal and 2 Oasys multifocal contact lenses. However, there were no differences in demographic factors relating to lifestyle or personality, or physiological characteristics such as pupil size or ocular aberrations as measured at baseline,which would allow a practitioner to identify which lens modality the patient would prefer. In terms of the performance of patients with their preferred lens, it emerged that Biofinity multifocal lens preferring patients had a better high contrast acuity under photopic conditions, maintained their reading speed at smaller print sizes and subjectively rated iPhone clarity as better with this lens compared with the other lens designs trialled. Patients who preferred monovision had a lower acuity across a range of distances and a larger area of glare than those patients preferring other lens designs that was unexplained by the clinical metrics measured. However, it seemed that a complex interaction of aberrations may drive lens preference. New clinical tests or more diverse lens designs which may allow practitioners to prescribe patients the presbyopic contact lens option that will work best for them first time remains a hope for the future.
Resumo:
This chapter discusses recent developments of injectable biomimetic hydrogel systems found in soft tissue repair applications. It begins by introducing how biomimesis and biomaterials are related, and how tissue repair systems can be considered biomimetic. We introduce hydrogels by discussing their classification, synthesis and applications, then discuss how injectable biomimetic hydrogels have been investigated for use in soft tissue repair. Different approaches to the use of biomimetic hydrogels for soft tissue repair are covered, focusing on synthetic, non-biodegrable polymers. We include so-called conventional polymers and more biomimetic polymers. The chapter concludes with the likely future trends and highlights further reading materials. © 2013 Woodhead Publishing Limited. All rights reserved.
Resumo:
Purpose: To investigate how initial HEMA and silicone-hydrogel (SiHy) contact lens fit on insertion, which informs prescribing decisions, reflect end of day fit. Methods: Thirty participants (aged 22.9. ±. 4.9 years) were fitted contralaterally with HEMA and SiHy contact lenses. Corneal topography and tear break-up time were assessed pre-lens wear. Centration, lag, post-blink movement during up-gaze and push-up recovery speed were recorded after 5,10,20. min and 8. h of contact lens wear by a digital slit-lamp biomicroscope camera, along with reported comfort. Lens fit metrics were analysed using bespoke software. Results: Comfort and centration were similar with the HEMA and SiHy lenses (p > 0.05), but comfort decreased with time (p <. 0.01) whereas centration remained stable (F = 0.036, p = 0.991). Movement-on-blink and lag were greater with the HEMA than the SiHy lens (p <. 0.01), but movement-on-blink decreased with time after insertion (F = 22.423, p <. 0.001) whereas lag remained stable (F = 1.967, p = 0.129). Push-up recovery speed was similar with the HEMA and the SiHy lens 5-20. min after insertion (p > 0.05), but was slower with SiHy after 8. h wear (p = 0.016). Lens movement on blink and push-up recovery speed was predictive of the movement after 8. h of wear after 10-20. min SiHy wear, but after 5 to 20. min of HEMA lens wear. Conclusions: A HEMA or SiHy contact lens with poor movement on blink/push-up after at least 10. min after insertion should be rejected.
Resumo:
Purpose - To investigate if the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) contact lenses (CL) is affected by the positive power of the CLs. Methods - The experimental group comprised 26 subjects, (8 male, 18 female). IOP measurements were undertaken on the subjects’ right eyes in random order using a Rebound Tonometer (ICare). The CLs had powers of +2.00 D and +6.00 D. Measurements were taken over each contact lens and also before and after the CLs had been worn. Results - The IOP measure obtained with both CLs was significantly lower compared to the value without CLs (t test; p < 0.001) but no significant difference was found between the two powers of CLs. Conclusions - Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses.
Resumo:
The year so far has been a slow start for many businesses, but at least we have not seen the collapse of as many businesses that we were seeing around two years ago. We are, however, still well and truly in the midst of a global recession. Interest rates are still at an all time low, UK house prices seem to be showing little signs of increase (except in London where everyone still seems to want to live!) and for the ardent shopper there are bargains to be had everywhere. It seems strange that prices on the high street do not seem to have increased in over ten years. Mobile phones, DVD players even furniture seems to be cheaper than they used to be. Whist much of this is down to cheaper manufacturing and the rest could probably be explained by competition within the market place. Does this mean that quality suffered too? Now that we live in a world when if a television is not working it is thrown away and replaced. There was a time when you would take it to some odd looking man that your father would know who could fix it for you. (I remember our local television fix-it man, with his thick rimmed bifocal spectacles and a poor comb-over; he had cardboard boxes full of resistors and electrical wires on the floor of his front room that smelt of soldering irons!) Is this consumerism at an extreme or has this move to disposability made us a better society? Before you think these are just ramblings there is a point to this. According to latest global figures of contact lens sales the vast majority of contact lenses fitted around the world are daily, fortnightly or monthly disposable hydrogel lenses. Certainly in the UK over 90% of lenses are disposable (with daily disposables being the most popular, having a market share of over 50%). This begs the question – is this a good thing? Maybe more importantly, do our patients benefit? I think it is worth reminding ourselves why we went down the disposability route with contact lenses in the first place, and unlike electrical goods it was not just so we did not have to take them for repair! There are the obvious advantages of overcoming problems of breakage and tearing of lenses and the lens deterioration with age. The lenses are less likely to be contaminated and the disinfection is either easier or not required at all (in the case of daily disposable lenses). Probably the landmark paper in the field was the work more commonly known as the ‘Gothenburg Study’. The paper, entitled ‘Strategies for minimizing the Ocular Effects of Extended Contact Lens Wear’ published in the American Journal of Optometry in 1987 (volume 64, pages 781-789) by Holden, B.A., Swarbrick, H.A., Sweeney, D.F., Ho, A., Efron, N., Vannas, A., Nilsson, K.T. They suggested that contact lens induced ocular effects were minimised by: •More frequently removed contact lenses •More regularly replaced contact lenses •A lens that was more mobile on the eye (to allow better removal of debris) •Better flow of oxygen through the lens All of these issues seem to be solved with disposability, except the oxygen issue which has been solved with the advent of silicone hydrogel materials. Newer issues have arisen and most can be solved in practice by the eye care practitioner. The emphasis now seems to be on making lenses more comfortable. The problems of contact lens related dry eyes symptoms seem to be ever present and maybe this would explain why in the UK we have a pretty constant contact lens wearing population of just over three million but every year we have over a million dropouts! That means we must be attracting a million new wearers every year (well done to the marketing departments!) but we are also losing a million wearers every year. We certainly are not losing them all to the refractive surgery clinics. We know that almost anyone can now wear a contact lens and we know that some lenses will solve problems of sharper vision, some will aid comfort, and some will be useful for patients with dry eyes. So if we still have so many dropouts then we must be doing something wrong! I think the take home message has to be ‘must try harder’! I must end with an apology for two errors in my editorial of issue 1 earlier this year. Firstly there was a typo in the first sentence; I meant to state that it was 40 years not 30 years since the first commercial soft lens was available in the UK. The second error was one that I was unaware of until colleagues Geoff Wilson (Birmingham, UK) and Tim Bowden (London, UK) wrote to me to explain that soft lenses were actually available in the UK before 1971 (please see their ‘Letters to the Editor’ in this issue). I am grateful to both of them for correcting the mistake.