834 resultados para Hybrid Polymeric Composites. Open Hol. Mechanical Properties. Residual Strength. Fracture
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Neste trabalho, materiais compósitos de matriz poliéster reforçados por fibras curtas de sisal, por resíduo de madeira e por sistema híbrido sisal/resíduo de madeira, dispostos aleatoriamente foram produzidos, utilizando-se o menor nível possível de processamento tecnológico nas etapas produtivas, com vistas a se produzir um compósito tecnicamente viável a pequenos produtores. A matriz de poliéster utilizada foi a tereftálica pré-acelerada com naftenato de cobalto e curada a temperatura ambiente com peróxido de metil-etil-cetona (MEK) em diferentes proporções em relação à resina, 0,33%, 1,66%, 3,33% e 5,00% em volume, de forma a se avaliar a influência deste nas propriedades mecânicas. As fibras de sisal foram cortadas manualmente nos comprimentos de 5, 10 e 15mm e utilizadas da maneira como adquiridas, sem tratamento superficial. O resíduo de madeira utilizado foi o pó de lixadeira da madeira maçaranduba. Os compósitos foram fabricados por moldagem manual, sem pressão e a temperatura ambiente. Foram fabricados corpos de prova de matriz pura, compósitos reforçados por sisal, variando-se o comprimento das fibras, compósitos reforçados por pó de maçaranduba e compósitos de reforço híbrido, sisal/pó de madeira, em diferentes proporções entre os constituintes. As propriedades mecânicas foram avaliadas por ensaios de tração e impacto charpy e as superfícies de fratura geradas foram avaliadas por microscopia eletrônica de varredura de modo a se correlacionar os aspectos de fratura com as propriedades mecânicas. Foi determinada a massa específica de cada série de corpos de prova fabricada, bem como a fração volumétrica dos reforços nos compósitos. Os resultados demonstraram que com o aumento do comprimento da fibra de sisal a resistência à tração e ao impacto dos compósitos foi incrementada, alcançando, o compósito com fibras de sisal de 15 mm, o melhor desempenho mecânico dentre as séries testadas. Por outro lado, a heterogeneidade granulométrica do pó de maçaranduba teve efeito negativo sobre as propriedades mecânicas dos compósitos. Os compósitos híbridos sisal/pó de madeira com maior teor de fibras, alcançaram 80% do desempenho obtido para os compósitos de fibras de sisal.
Resumo:
Neste trabalho é apresentada a fabricação e caracterização de um material compósito de matriz polimérica reforçada por fibras naturais. A matriz é um poliéster teraftélica insaturada préacelerada obtida comercialmente como Denverpoly 754 e o agente de cura utilizado foi o peróxido de Mek (Butanox M- 50), na proporção de 0,33 % , em volume. A fibra natural usada foi o tururi, obtida da região do Marajó, município de Muaná. O tecido de fibra de tururi foi submetido a dois tipos de abertura no sentido transversal, de [50 e 100]%, em relação a uma largura original. A fabricação do material compósito foi através do método da laminação manual (hand lay up), seguido de uma pressão controlada através de pesos previamente quantificados. Características físicas, mecânicas e microscópicas foram obtidas para a fibra e o material compósito, obtendo-se resistência a tração, massa específica, gramatura do tecido, fração mássica e imagens microscópicas antes e depois do ensaio de tração para o tecido da fibra e ensaio de tração depois do ensaio de tração para o material compósito. O tecido de tururi apresentou resistência a tração de 29,95 MPa (sem abertura), 12,27 MPa (abertura de 50 %) e 9,38 MPa (abertura de 100 %). A abertura provoca a diminuição da resistência à tração do tecido de tururi. A gramatura do tecido diminuiu com a abertura do tecido. A fração mássica do tecido do compósito foi de 14,39 % (sem abertura), 9,35 % (abertura de 50 %) e 7,19 % (abertura de 100 %). A resistência a tração do compósito foi de 35,76 MPa (sem abertura), 19,01 MPa (50 % de abertura) e 16,8 MPa (100 % de abertura). A resistência mecânica apresentou valores aproximados aos encontrados na literatura para materiais compósitos reforçados por fibras naturais. As imagens obtidas em microscopia eletrônica de varredura corroboraram com as propriedades mecânicas obtidas para cada situação do material e fibras.
Resumo:
The interest in the use of vegetable fibers (e.g. jute, sisal and curaua) for more noble applications, such as reinforcement in polymeric composite materials, has increased over the years due to a variety of aspects, especially those related to environmental legislation and community awareness regarding the life cycle of products. In this context, the aim of this work is to develop hybrid interlaminate curaua/glass/insaturated polyester composites by hot compression molding and to analyze their mechanical properties as a function of the thickness of the laminate. The short beam strength of the thickest sample decreased due to its higher void content. Furthermore, the thinnest sample showed lower hardness, and lower impact, tensile and Iosipescu shear strength, partly attributed to its lower fiber volumetric fraction. Thus, in general, the most adequate laminate was the one comprising eight layers, four of which were of glass fiber and four of curaua fiber, but only if flexural loading is not critical.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The concern with the environment preservation has done with that researchers as well as industries invest in the search for materials that come from renewable sources. Natural fibers, because they are ecologically correct and have low cost, have been studied as a possible substitute, even if partial, of synthetic fibers in the development of polymeric composites. In this context, the hybrid composites (natural/synthetic) increase considerably the range of application of natural composites. The auto industry, in its constant quest for good mechanical properties materials which are developed with sustainability, has in composites with hybrid reinforcement a very viable alternative. In the present work, the nature Crown pineapple fibers and nature Crown pineapple fibers treated with alkaline solution were studied in order to evaluate the influence of chemical treatment in its properties. For this techniques were used x-ray diffractometry, Thermogravimetry and Infrared Spectroscopy (FTIR). Composites have been developed using polypropylene, reinforced with pineapple fibers and pineapple fibers hybrids/glass fibres, both with levels of 5 and 10%. These composites were analyzed by Thermogravimetry techniques and tested by traction. The realization of this work indicated that although the chemical treatment did not affect the thermal stability of the fibers, caused an increase in crystallinity index fibers and decreased its hydrophilic. The tests performed on composite indicated that the composites process was suitable because it provided good dispersion of the polymer matrix. The addition of natural fibers from the pineapple's Crown, in a proportion of 10%, provided the greatest increase in modulus of elasticity (27%) when compared to the pure polymer
Resumo:
The waste, exaggerated and incorrect disposal of biomass are common practices in modern times where everything is disposable. However the growing concern with the nature and the environment compel man to give nobler destinations for these products through sustainability and recycling of waste. Banana peel is a residual biomass, which is not consumed. It generates tons of waste per week in São Paulo city. This trash is disposed in dumps and landfills, which could be reduced by using it as reinforcement in natural composites. The high density polyethylene (HDPE) is a polymer derived from the ethylene polymerization and is easily recycled. Which makes it a sustainable material. In the present work characteristics of the natural composite composed with banana peel and high-density polyethylene were studied. It was noted that removing the lignin present in the banana peel, the fiber introduces a significant improvement in thermal resistance. The preparation of composite was made with a ratio of 5% and 10% of reinforcement in comparison with polymeric matrix mass. Composites were thermally, mechanically and microscopically characterized. The addition of fiber in the polymer increased the mechanical strength of the composite. The fiber surface treatment with distilled water removed the amorphous material present in the fibers, improving significantly thermal stability and increasing crystallinity of the celullose. The addition of 5% fiber in mass to the polymer increased significantly the tensile strength and elasticity modulus for the composite. With 10% of fiber addiction there were also an improvement when compared with pure HDPE, but when compared with 5% composite the mechanical properties are slightly lower. This may be due to the fiber particle size, which are small and eventually become a hub of tension ... (Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. Verify the influence of different filler distributions on the subcritical crack growth (SCG) susceptibility, Weibull parameters (m and sigma(0)) and longevity estimated by the strength-probability-time (SPT) diagram of experimental resin composites. Methods. Four composites were prepared, each one containing 59 vol% of glass powder with different filler sizes (d(50) = 0.5; 0.9; 1.2 and 1.9 mu m) and distributions. Granulometric analyses of glass powders were done by a laser diffraction particle size analyzer (Sald-7001, Shimadzu, USA). SCG parameters (n and sigma(f0)) were determined by dynamic fatigue (10(-2) to 10(2) MPa/s) using a biaxial flexural device (12 x 1.2 mm; n = 10). Twenty extra specimens of each composite were tested at 10(0) MPa/s to determine m and sigma(0). Specimens were stored in water at 37 degrees C for 24 h. Fracture surfaces were analyzed under SEM. Results. In general, the composites with broader filler distribution (C0.5 and C1.9) presented better results in terms of SCG susceptibility and longevity. C0.5 and C1.9 presented higher n values (respectively, 31.2 +/- 6.2(a) and 34.7 +/- 7.4(a)). C1.2 (166.42 +/- 0.01(a)) showed the highest and C0.5 (158.40 +/- 0.02(d)) the lowest sigma(f0) value (in MPa). Weibull parameters did not vary significantly (m: 6.6 to 10.6 and sigma(0): 170.6 to 176.4 MPa). Predicted reductions in failure stress (P-f = 5%) for a lifetime of 10 years were approximately 45% for C0.5 and C1.9 and 65% for C0.9 and C1.2. Crack propagation occurred through the polymeric matrix around the fillers and all the fracture surfaces showed brittle fracture features. Significance. Composites with broader granulometric distribution showed higher resistance to SCG and, consequently, higher longevity in vitro. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper evaluates the photopolymerization kinetics and degree of conversion of different commercial dental composites when photoactivated by a LED curing unit using two different modes (standard and soft-start mode). The investigation was performed on with RelyX ARC (dual-cured), Filtek Z-350 (Nanocomposite), Filtek Z-250 (Hybrid), and Filtek Z-350flow (Flowable) resin composites. The analysis used was attenuated total reflection with a Fourier transform infrared (ATR-FTIR). The RelyX ARC resin demonstrated the highest degree of conversion with both LED photoactivation modes. For this resin a 28% decrease in maximum rate was observed and the time to reach its highest rate was almost 2.3 times higher than when the soft-start photoactivation light curing was used. Z-350flow resin recorder a higher maximum rate using the soft-start mode rather than the standard mode. In contrast, the Z-250 showed a higher value using the standard mode. Although Z-250 and Z-350 showed a higher total degree of conversion effectiveness using the soft-start mode, RelyX and Z-350flow achieved a higher value using the standard mode.
Resumo:
The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.
Resumo:
A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn