914 resultados para Humid areas
Resumo:
Marine Protected Areas (MPAs) are an important conservation tool. For marine predators, recent research has focused on the use of Species Distribution Models (SDMs) to identify proposed sites. We used a maximum entropy modelling approach based on static and dynamic oceanographic parameters to determine optimal feeding habitat for black-legged kittiwakes (Rissa tridactyla) at two colonies during two consecutive breeding seasons (2009 and 2010). A combination of Geographic Positioning System (GPS) loggers and Time-Depth Recorders (TDRs) attributed feeding activity to specific locations. Feeding areas were <30 km from the colony, <40 km from land, in productive waters, 25–175m deep. The predicted extent of optimal habitat declined at both colonies between 2009 and 2010 coincident with declines in reproductive success. Whilst the area of predicted optimal habitat changed, its location was spatially stable between years. There was a close match between observed feeding locations and habitat predicted as optimal at one colony (Lambay Island, Republic of Ireland), but a notable mismatch at the other (Rathlin Island, Northern Ireland). Designation of an MPA at Rathlin may, therefore, be less effective than a similar designation at Lambay perhaps due to the inherent variability in currents and sea state in the North Channel compared to the comparatively stable conditions in the central Irish Sea. Current strategies for designating MPAs do not accommodate likely future redistribution of resources due to climate change. We advocate the development of new approaches including dynamic MPAs that track changes in optimal habitat and non-colony specific ecosystem management.
Resumo:
Mitigation of diffuse nutrient and sediment delivery to streams requires successful identification andmanagement of critical source areas within catchments. Approaches to predicting high risk areas forsediment loss have typically relied on structural drivers of connectivity and risk, with little considera-tion given to process driven water quality responses. To assess the applicability of structural metrics topredict critical source areas, geochemical tracing of land use sources was conducted in three headwateragricultural catchments in Co. Down and Co. Louth, Ireland, within a Monte Carlo framework. Outputswere applied to the inverse optimisation of a connectivity model, based on LiDAR DEM data, to assess theefficacy of land use risk weightings to predict sediment source contributions over the 18 month studyperiod in the Louth Upper, Louth Lower and Down catchments. Results of the study indicated sedimentproportions over the study period varied from 6 to 10%, 84 to 87%, 4%, and 2 to 3% for the Down Catch-ment, 79 to 85%, 9 to 17%, 1 to 3% and 2 to 3% in the Louth Upper and 2 to 3%, 79 to 85%, 10 to 17%and 2 to 3% in the Louth Lower for arable, channel bank, grassland, and woodland sources, respectively.Optimised land use risk weightings for each sampling period showed that at the larger catchment scale,no variation in median land use weightings were required to predict land use contributions. However,for the two smaller study catchments, variation in median risk weightings was considerable, which mayindicate the importance of functional connectivity processes at this spatial scale. In all instances, arableland consistently generated the highest risk of sediment loss across all catchments and sampling times.This study documents some of the first data on sediment provenance in Ireland and indicates the needfor cautious consideration of land use as a tool to predict critical source areas at the headwater scale
Resumo:
We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.
Resumo:
In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species. © 2013 IOP Publishing Ltd.
Resumo:
Newborn babies can require significant amounts of medication containing excipients intended to improve the drug formulation. Most medicines given to neonates have been developed for adults or older children and contain excipients thought to be safe in these age groups. Many excipients have been used widely in neonates without obvious adverse effects. Some excipients may be toxic in high amounts in which case they need careful risk assessment. Alternatively, it is conceivable that ill-founded fears about excipients mean that potentially useful medicines are not made available to newborn babies. Choices about excipient exposure can occur at several stages throughout the lifecycle of a medicine, from product development through to clinical use. Making these choices requires a scalable approach to analysing the overall risk. In this contribution we examine these issues.
Resumo:
Some studies suggest that there are urban-rural variations in cancer incidence but whether these simply reflect urban-rural socioeconomic variation is unclear. We investigated whether there were urban-rural variations in the incidence of 18 cancers, after adjusting for socioeconomic status. Cancers diagnosed between 1995 and 2007 were extracted from the population-based National Cancer Registry Ireland and Northern Ireland Cancer Registry and categorised by urban-rural status, based on population density of area of residence at diagnosis (rural 15 people per hectare). Relative risks (RR) were calculated by negative binomial regression, adjusting for age, country and three area-based markers of socioeconomic status. Risks were significantly higher in both sexes in urban than rural residents with head and neck (males RR urban vs. rural = 1.53, 95 % CI 1.42-1.64; females RR = 1.29, 95 % CI 1.15-1.45), esophageal (males 1.21, 1.11-1.31; females 1.21, 1.08-1.35), stomach (males 1.36, 1.27-1.46; females 1.19, 1.08-1.30), colorectal (males 1.14, 1.09-1.18; females 1.04, 1.00-1.09), lung (males 1.54, 1.47-1.61; females 1.74, 1.65-1.84), non-melanoma skin (males 1.13, 1.10-1.17; females 1.23, 1.19-1.27) and bladder (males 1.30, 1.21-1.39; females 1.31, 1.17-1.46) cancers. Risks of breast, cervical, kidney and brain cancer were significantly higher in females in urban areas. Prostate cancer risk was higher in rural areas (0.94, 0.90-0.97). Other cancers showed no significant urban-rural differences. After adjusting for socioeconomic variation, urban-rural differences were evident for 12 of 18 cancers. Variations in healthcare utilization and known risk factors likely explain some of the observed associations. Explanations for others are unclear and, in the interests of equity, warrant further investigation. © 2014 The New York Academy of Medicine.
Resumo:
The thriving and well-established field of Law and Society (also referred to as Sociolegal Studies) has diverse methodological influences; it draws on social-scientific and arts-based methods. The approach of scholars researching and teaching in the field often crosses disciplinary borders, but, broadly speaking, Law and Society scholarship goes behind formalism to investigate how and why law operates, or does not operate as intended, in society. By exploring law’s connections with broader social and political forces—both domestic and international—scholars gain valuable perspectives on ideology, culture, identity, and social life. Law and Society scholarship considers both the law in contexts, as well as contexts in law.
Law and Society flourishes today, perhaps as never before. Academic thinkers toil both on the mundane and the local, as well as the global, making major advances in the ways in which we think both about law and society. Especially over the last four decades, scholarly output has rapidly burgeoned, and this new title from Routledge’s acclaimed Critical Concepts in Law series answers the need for an authoritative reference collection to help users make sense of the daunting quantity of serious research and thinking.
Edited by the leading scholars in the field, Law and Society brings together in four volumes the vital classic and contemporary contributions. Volume I is dedicated to historical antecedents and precursors. The second volume covers methodologies and crucial themes. The third volume assembles key works on legal processes and professional groups, while the final volume of the collection focuses on substantive areas. Together, the volumes provide a one-stop ‘mini library’ enabling all interested researchers, teachers, and students to explore the origins of this thriving sub discipline, and to gain a thorough understanding of where it is today.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.
Resumo:
Urban areas are pivotal to global adaptation and mitigation efforts. But how do cities actually perform in terms of climate change response? This study sheds light on the state of urban climate change adaptation and mitigation planning across Europe. Europe is an excellent test case given its advanced environmental policies and high urbanization. We performed a detailed analysis of 200 large and medium-sized cities across 11 European countries and analysed the cities' climate change adaptation and mitigation plans. We investigate the regional distribution of plans, adaptation and mitigation foci and the extent to which planned greenhouse gas (GHG) reductions contribute to national and international climate objectives. To our knowledge, it is the first study of its kind as it does not rely on self-assessment (questionnaires or social surveys). Our results show that 35 % of European cities studied have no dedicated mitigation plan and 72 % have no adaptation plan. No city has an adaptation plan without a mitigation plan. One quarter of the cities have both an adaptation and a mitigation plan and set quantitative GHG reduction targets, but those vary extensively in scope and ambition. Furthermore, we show that if the planned actions within cities are nationally representative the 11 countries investigated would achieve a 37 % reduction in GHG emissions by 2050, translating into a 27 % reduction in GHG emissions for the EU as a whole. However, the actions would often be insufficient to reach national targets and fall short of the 80 % reduction in GHG emissions recommended to avoid global mean temperature rising by 2 °C above pre-industrial levels. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify
linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36”) soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene
amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the surface/subsurface models, in which coupled biogeochemical reaction
networks are used to improve the representation of below-ground processes. Preliminary results suggest that inclusion of above ground processes from CLM greatly improves the prediction of moisture response and water cycle at the watershed scale.
Resumo:
The invasive aquatic plant species Elodea nuttallii could pose a considerable risk to European freshwater ecosystems based on its current distribution, rate of spread and potential for high biomass. However, little research has been conducted on the impacts of this species on native biota. This study takes an ecosystem-wide approach and examines the impact of E. nuttallii on selected physicochemical parameters (dissolved oxygen and pH), algae, invertebrate and macrophyte communities. Elodea nuttallii had small but significant impacts on plant, invertebrate and algal species. The richness of algal periphyton was lower on E. nuttallii than on native macrophytes. The taxonomic composition of invertebrate communities associated with E. nuttallii differed from that associated with similar native plant species, but did not differ in terms of total biomass or species richness. Macrophyte species richness and total cover were positively correlated with percentage cover of E. nuttallii. Not all macrophyte species responded in the same way to E. nuttallii invasion; cover of the low-growing species, Elodea canadensis and charophytes were negatively correlated with E. nuttallii cover, whilst floating-rooted plants were positively correlated with E. nuttallii cover. All observed differences in the macrophyte community were small relative to other factors such as nutrient levels, inter-annual variation and differences between sites. Despite this, the observed negative association between E. nuttallii and charophytes is a key concern due to the rarity and endangered status of many charophyte species.
Resumo:
This paper will discuss the issues of spatial segregation in the divided city context,focusing on Belfast as a case study it will discuss, issues that limit the inclusivity of shared space in the city, the challenge of insular spatial patterns created by division, and the micro politics of everyday contact. It will argue the significance of creating everyday space to enable practical socio-spatial interaction between divided groups and propose that areas on community borders can be developed as active spaces accommodating services that the communities need, use, and want on an everyday basis, by doing so it offers a potential form valuable contact. It will report on an ongoing study which examines such sites located on community border and assesses their capacity to act as beneficial ‘spaces of engagement’ for communities set within divided context.