865 resultados para Hierarchical sampling
Resumo:
A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.
Resumo:
To investigate the inhomogeneity of radiofrequency fields at higher field strengths that can interfere with established volumetric methods, in particular for the determination of visceral (VAT) and subcutaneous adipose tissue (SCAT). A versatile, interactive sparse sampling (VISS) method is proposed to determine VAT, SCAT, and also total body volume (TBV).
Resumo:
BACKGROUND: In order to optimise the cost-effectiveness of active surveillance to substantiate freedom from disease, a new approach using targeted sampling of farms was developed and applied on the example of infectious bovine rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) in Switzerland. Relevant risk factors (RF) for the introduction of IBR and EBL into Swiss cattle farms were identified and their relative risks defined based on literature review and expert opinions. A quantitative model based on the scenario tree method was subsequently used to calculate the required sample size of a targeted sampling approach (TS) for a given sensitivity. We compared the sample size with that of a stratified random sample (sRS) with regard to efficiency. RESULTS: The required sample sizes to substantiate disease freedom were 1,241 farms for IBR and 1,750 farms for EBL to detect 0.2% herd prevalence with 99% sensitivity. Using conventional sRS, the required sample sizes were 2,259 farms for IBR and 2,243 for EBL. Considering the additional administrative expenses required for the planning of TS, the risk-based approach was still more cost-effective than a sRS (40% reduction on the full survey costs for IBR and 8% for EBL) due to the considerable reduction in sample size. CONCLUSIONS: As the model depends on RF selected through literature review and was parameterised with values estimated by experts, it is subject to some degree of uncertainty. Nevertheless, this approach provides the veterinary authorities with a promising tool for future cost-effective sampling designs.
Resumo:
Full axon counting of optic nerve cross-sections represents the most accurate method to quantify axonal damage, but such analysis is very labour intensive. Recently, a new method has been developed, termed targeted sampling, which combines the salient features of a grading scheme with axon counting. Preliminary findings revealed the method compared favourably with random sampling. The aim of the current study was to advance our understanding of the effect of sampling patterns on axon counts by comparing estimated axon counts from targeted sampling with those obtained from fixed-pattern sampling in a large collection of optic nerves with different severities of axonal injury.
Resumo:
Recent optimizations of NMR spectroscopy have focused their attention on innovations in new hardware, such as novel probes and higher field strengths. Only recently has the potential to enhance the sensitivity of NMR through data acquisition strategies been investigated. This thesis has focused on the practice of enhancing the signal-to-noise ratio (SNR) of NMR using non-uniform sampling (NUS). After first establishing the concept and exact theory of compounding sensitivity enhancements in multiple non-uniformly sampled indirect dimensions, a new result was derived that NUS enhances both SNR and resolution at any given signal evolution time. In contrast, uniform sampling alternately optimizes SNR (t < 1.26T2) or resolution (t~3T2), each at the expense of the other. Experiments were designed and conducted on a plant natural product to explore this behavior of NUS in which the SNR and resolution continue to improve as acquisition time increases. Possible absolute sensitivity improvements of 1.5 and 1.9 are possible in each indirect dimension for matched and 2x biased exponentially decaying sampling densities, respectively, at an acquisition time of ¿T2. Recommendations for breaking into the linear regime of maximum entropy (MaxEnt) are proposed. Furthermore, examination into a novel sinusoidal sampling density resulted in improved line shapes in MaxEnt reconstructions of NUS data and comparable enhancement to a matched exponential sampling density. The Absolute Sample Sensitivity derived and demonstrated here for NUS holds great promise in expanding the adoption of non-uniform sampling.
Performance Tuning Non-Uniform Sampling for Sensitivity Enhancement of Signal-Limited Biological NMR
Resumo:
Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20-40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling H-1,N-15-HSQC experiments on natural abundance protein samples and H-1,C-13-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data.
Resumo:
Background: The lectin pathway of complement activation, in particular mannose-binding lectin (MBL), has been extensively investigated over recent years. So far, studies were exclusively based on venous samples. The aim of this study was to investigate whether measurements of lectin pathway proteins obtained by capillary sampling are in agreement with venous samples. Methods: Prospective study including 31 infants that were admitted with suspected early-onset sepsis. Lectin pathway proteins were measured in simultaneously obtained capillary and venous samples. Bland–Altman plots of logarithmized results were constructed, and the mean capillary to venous ratios (ratiocap/ven) were calculated with their 95% confidence intervals (CI). Results: The agreement between capillary and venous sampling was very high for MBL (mean ratiocap/ven, 1.01; 95% CI, 0.85–1.19). Similarly, high agreement was observed for H-ficolin (mean ratiocap/ven, 1.02; 95% CI, 0.72–1.44), MASP-2 (1.04; 0.59–1.84), MASP-3 (0.96; 0.71–1.28), and MAp44 (1.01; 0.82–1.25), while the agreement was moderate for M-ficolin (mean ratiocap/ven, 0.78; 95% CI, 0.27–2.28). Conclusions: The results of this study show an excellent agreement between capillary and venous samples for most lectin pathway proteins. Except for M-ficolin, small volume capillary samples can thus be used when assessing lectin pathway proteins in neonates and young children.