931 resultados para Heterogeneous Catalysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective heterogeneous catalytic reduction of phenyl acetylene to styrene over palladium supported on calcium carbonate is reported in both an ionic liquid and a molecular solvent. By using a rotating disc reactor in conjunction with results from a stirred tank reactor it is possible, for the first time, to disentangle the mass transfer contributions in the ionic liquid system. For both heptane and 1-butyl-3-methyl imidazolium bis{(trifluoromethyl)sulfonyl}imide, the reaction in the rotating disc reactor is dominated by reaction in the entrained film on the disc compared with very limited reaction in the bulk liquid. The lower reaction rate obtained in the ionic liquid compared with the organic solvent is shown to be due to the slow transport of the hydrogen dissolved in the liquid. It is clear from the results presented herein that, although the hydrodynamics of similar reactors used for biological treatment of wastewater are well understood, on using a more viscous fluid and higher rotation speeds necessary for fine chemical catalysis these simple relationships breakdown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of cis-dihydrodiol metabolites, available from the bacterial dioxygenase-catalysed oxidation of monosubstituted benzene substrates using Pseudomonas putida UV4, have been converted to the corresponding catechols using both a heterogeneous catalyst (Pd/C) and a naphthalene cis-diol dehydrogenase enzyme present in whole cells of the recombinant strain Escherichia coli DH5 alpha(pUC129: nar B). A comparative study of the merits of both routes to 3-substituted catechols has been carried out and the two methods have been found to be complementary. A similarity in mechanism for catechol formation under both enzymatic and chemoenzymatic conditions, involving regioselective oxidation of the hydroxyl group at C-1, has been found using deuterium labelled toluene cis-dihydrodiols. The potential, of combining a biocatalytic step (dioxygenase-catalysed cis-dihydroxylation) with a chemocatalytic step (Pd/C-catalysed dehydrogenation), into a one-pot route to catechols, from the parent substituted benzene substrates, has been realised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range.The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg+2 binding first (Kd =140 ± 40 M), are kcat = 105 ± 2 s-1 and P-pyr Km = 5 ± 1 M. PEP (slow substrate kcat = 2 × 10-4 s-1), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 ± 0.1 mM, 17 ± 1 M, and 210 ± 10 M, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (/)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ruthenium, rhodium, and iridium piano stool complexes of the pentafluorophenyl-substituted diphosphine (C6F5)2PCH2P(C6F5)2 (2) have been prepared and structurally characterized by single-crystal X-ray diffraction. The Cp-P tethered complex [{(C5Me4CH2C6F4(C6F5)CH2P(C6F5)2}RhCl2] (9), in which only one phosphorus is coordinated to the rhodium, was prepared by thermolysis of a slurry of [Cp*RhCl(-Cl)]2 and 2 and was structurally characterized by single-crystal X-ray diffraction. The tethering occurs by intramolecular dehydrofluorinative coupling of the pentamethylcyclopentadienyl ligand and P,P-coordinated 2. The geometric changes that occur on tethering force dissociation of one of the phosphorus atoms. The effects of introducing phosphine ligands to the coordination sphere of piano stool hydrogen transfer catalysts have been studied. The complexes of fluorinated phosphine complexes are found to transfer hydrogen at rates that compare favorably with leading catalysts, particularly when the phosphine and cyclopentadienyl functionalities are tethered. The highly chelating Cp-PP complex [(C5Me4CH2-2-C5F3N-4-PPhCH2CH2PPh2)RhCl]BF4 (1) was found to outperform all other complexes tested. The mechanism of hydrogen transfer catalyzed by piano stool phosphine complexes is discussed with reference to the trends in activity observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous immobilized ionic liquid catalysts were prepared via grafting of 1,3-dimethyl-3-(3-triethoxysilylpropyl)-imidazolium tetrafluoroborate or bist{(trifluoromethyl)sulfonyl} imide ([NTf2](-)) on silica supports with different surfaces and pore size. In addition to the adsorption-desorption isotherms of nitrogen at -196C, the catalysts were characterized by TG-DTA, XPS, DRIFTS, DR-UV-vis, NMR, and XRD techniques. The catalytic behavior was checked in the acylation of three different sulfonamines: benzenesulfonamine, p-nitrobenzene-sulfonamine, and p-methoxybenzene-sulfonamine with acetic acid, acetic anhydride and maleic anhydride. These tests confirmed the acid Lewis properties of these catalysts. (c) 2007 Elsevier B.V. All rights reserved.