928 resultados para Hepatic enzyme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angio-oedema (AE) is a known adverse effect of angiotensin converting enzyme inhibitor (ACE-I) therapy. Over the past several decades, evidence of failure to diagnose this important and potentially fatal reaction is commonly found in the literature. Because this reaction is often seen first in the primary care setting, a review was undertaken to analyse and document the keys to both diagnostic criteria as well as to investigate potential risk factors for ACE-I AE occurrence. A general review of published literature was conducted through Medline, EMBASE, and the Cochrane Database, targeting ACE-I-related AE pathomechanism, diagnosis, epidemiology, risk factors, and clinical decision making and treatment. The incidence and severity of AE appears to be on the rise and there is evidence of considerable delay in diagnosis contributing to significant morbidity and mortality for patients. The mechanism of AE due to ACE-I drugs is not fully understood, but some genomic and metabolomic information has been correlated. Additional epidemiologic data and clinical treatment outcome predictors have been evaluated, creating a basis for future work on the development of clinical prediction tools to aid in risk identification and diagnostic differentiation. Accurate recognition of AE by the primary care provider is essential to limit the rising morbidity associated with ACE-I treatment-related AE. Research findings on the phenotypic indicators relevant to this group of patients as well as basic research into the pathomechanism of AE are available, and should be used in the construction of better risk analysis and clinical diagnostic tools for ACE-I AE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena oli selvittää entsyymikonvertoinnin mahdollisuudet vaikuttaa sideainetärkkelyksen toiminnallisiin ominaisuuksiin. Tärkein tehtävä oli etsiä vastaukset kysymykseen, kuinka paljon entsyymikonvertointia optimoimalla voidaan maksimoida tärkkelyksen positiivisia vaikutuksia. Tavoitteena oli myös tutkia, voiko lisäaineita käyttämällä ja tärkkelystä plastisoimalla säilyttää tärkkelyksen vaikutus paperin jäykkyyteen ja saada tärkkelysfilmille joustavuutta. Kirjallisuusosassa tarkasteltiin tärkkelyksen entsyymikonvertointiin vaikuttavia tekijöitä, eri tärkkelysraaka-aineiden eroja, sekä konvertoinnissa käytettävien entsyymien ominaisuuksia. Kirjallisuusosassa tarkasteltiin myöstärkkelyksen käyttöä sideaineena pigmenttipäällystyksessä. Kokeellisessa osassakeskityttiin selvittämään entsyymikonvertoinnin olosuhteiden, käytettävän raakatärkkelyksen ja entsyymin vaikutusta konvertoidun tärkkelyksen ominaisuuksiin. Konvertoiduista tärkkelyksistä valmistettiin päällystyspastat, ja tutkittiin niinpastan kuin päällystetyn paperin ominaisuuksia. Myös erilaisten pehmentimien vaikutusta niin päällystyspastaan, kuin paperin pinnalle tutkittiin. Havaittiin, että konvertoimalla tärkkelysketjua entsymaattisesti, voidaan tärkkelysketjun pituutta säädellä. Tarkoituksena oli konvertoida tärkkelystä niin, että tärkkelyksen molekyyliketjujakaumat sisältävät lyhyitä, keskipitkiä sekäpitkiä molekyylejä. Päällystämisen havaittiin olevan vaikeaa Helicoaterilla varsinkin pitkäketjuista tärkkelystä suuren määrän sisältävillä pastoilla. Myös tärkkelys/lateksi-suhde vaihteli eri pastoilla. Päällystyspastojen reologisia ominaisuuksia testattaessa huomattiin, että tärkkelysketjun pituuden kasvaessa pastanviskositeetti lisääntyy ja vesiretentio vähenee. Havaittiin vain muutamia teknisiä paperiominaisuuksia, jotka korreloivat hyvin tärkkelysketjun pituuden kanssa. Näitä olivat kiilto, Gurley-Hill huokoisuus, taivutusvastus, taivutuspituus sekä IGT pintalujuus. Pehmentimien ei havaittu vaikuttavan moneenkaan paperin eri tekniseen ominaisuuteen. Suurimmat erot huomattiin paperin taivutuspituudessa ja taivutusvastuksessa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though β cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr-/- mice. Collectively, our data show that glucose sensing by the liver controls β cell glucose competence and suggest BAs as a potential mechanistic link.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare qualitative and quantitative magnetic resonance (MR) imaging characteristics of hepatic hemangiomas in patients with normal, fibrotic and cirrhotic livers. MATERIALS AND METHODS: Retrospective, institutional review board approved study (waiver of informed consent). Eighty-nine consecutive patients with 231 hepatic hemangiomas who underwent liver MR imaging for lesion characterization were included. Lesions were classified into three groups according to the patients' liver condition: no underlying liver disease (group 1), fibrosis (group 2) and cirrhosis (group 3). Qualitative and quantitative characteristics (number, size, signal intensities on T1-, T2-, and DW MR images, T2 shine-through effect, enhancement patterns (classical, rapidly filling, delayed filling), and ADC values) were compared. RESULTS: There were 160 (69%), 45 (20%), and 26 (11%) hemangiomas in groups 1, 2 and 3, respectively. Lesions were larger in patients with normal liver (group 1 vs. groups 2 and 3; P=.009). No difference was found between the groups on T2-weighted images (fat-suppressed fast spin-echo (P=.82) and single-shot (P=.25)) and in enhancement patterns (P=.56). Mean ADC values of hemangiomas were similar between groups 1, 2 and 3 (2.11±.52×10(-3)mm(2)/s, 2.1±.53×10(-3)mm(2)/s and 2.14±.44×10(-3)mm(2)/s, P=87, respectively). T2 shine-through effect was less frequently observed in cirrhosis (P=.02). CONCLUSION: MR imaging characteristics of hepatic hemangioma were similar in patients with normal compared to fibrotic and cirrhotic livers. Smaller lesion size was observed with liver disease and less T2 shine-through effect was seen in hemangiomas developed on cirrhosis, the latter being an important finding to highlight in these patients at risk of developing hepatocellular carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that oval cells harboring a genetically inactivated Met tyrosine kinase (Met−/− oval cells) are more sensitive to TGF-β-induced apoptosis than cells expressing a functional Met (Metflx/flx), demonstrating that the HGF/Met axis plays a pivotal role in oval cell survival. Here, we have examined the mechanism behind this effect and have found that TGF-β induced a mitochondria-dependent apoptotic cell death in Metflx/flx and Met−/− oval cells, associated with a marked increase in levels of the BH3-only proteins Bim and Bmf. Bmf plays a key role during TGF-β-mediated apoptosis since knocking down of BMF significantly diminished the apoptotic response in Met-/- oval cells. TGF-β also induced oxidative stress accompanied by NADPH oxidase 4 (Nox4) mRNA up-regulation and decreased protein levels of antioxidant enzymes. Antioxidants inhibit both TGF-β-induced caspase 3 activity and Bmf up-regulation, revealing an oxidative stress-dependent Bmf regulation by TGF-β. Notably, oxidative stress-related events were strongly amplified in Met−/− oval cells, emphasizing the critical role of Met in promoting survival. Pharmacological inhibition of PI3K did impair HGF-driven protection from TGF-β-induced apoptosis and increased sensitivity of Metflx/flx oval cells to TGF-ß by enhancing oxidative stress, reaching apoptotic indices similar to those obtained in Met−/− oval cells. Interestingly, both PI3K inhibition and/or knockdown itself resulted in caspase-3 activation and loss of viability in Metflx/flx oval cells, whereas no effect was observed in Met−/− oval cells. Altogether, results presented here provide solid evidences that both paracrine and autocrine HGF/Met signaling requires PI3K to promote mouse hepatic oval cell survival against TGF-β-induced oxidative stress and apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Angiotensiini I -muuntavaa entsyymiä estävien peptidien aminohapposekvenssien esiintyminen viljan varastoproteiinien rakenteessa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-β. We analyzed the oxidative stress induced by TGF-β and examined cellular defense mechanisms upon transdifferentiation of HSCs to M-HTs. Results: We found reactive oxygen species (ROS) significantly upregulated in M1-4HSCs within 72 hours of TGF-β administration. In contrast, M-HTs harbored lower intracellular ROS content than M1-4HSCs, despite of elevated NADPH oxidase activity. These observations indicated an upregulation of cellular defense mechanisms in order to protect cells from harmful consequences caused by oxidative stress. In line with this hypothesis, superoxide dismutase activation provided the resistance to augmented radical production in M-HTs, and glutathione rather than catalase was responsible for intracellular hydrogen peroxide removal. Finally, the TGF-β/NADPH oxidase mediated ROS production correlated with the upregulation of AP-1 as well as platelet-derived growth factor receptor subunits, which points to important contributions in establishing antioxidant defense. Conclusion: The data provide evidence that TGF-β induces NADPH oxidase activity which causes radical production upon the transdifferentiation of activated HSCs to M-HTs. Myofibroblastoid cells are equipped with high levels of superoxide dismutase activity as well as glutathione to counterbalance NADPH oxidase dependent oxidative stress and to avoid cellular damage.