944 resultados para Hazard-Based Models
Resumo:
The pressuremeter test in boreholes has proven itself as a useful tool in geotechnical explorations, especially comparing its results with those obtained from a mathematical model ruled by a soil representative constitutive equation. The numerical model shown in this paper is aimed to be the reference framework for the interpretation of this test. The model analyses variables such as: the type of response, the initial state, the drainage regime and the constitutive equations. It is a model of finite elements able to work with a mesh without deformation or one adapted to it.
Resumo:
El principio de Teoría de Juegos permite desarrollar modelos estocásticos de patrullaje multi-robot para proteger infraestructuras criticas. La protección de infraestructuras criticas representa un gran reto para los países al rededor del mundo, principalmente después de los ataques terroristas llevados a cabo la década pasada. En este documento el termino infraestructura hace referencia a aeropuertos, plantas nucleares u otros instalaciones. El problema de patrullaje se define como la actividad de patrullar un entorno determinado para monitorear cualquier actividad o sensar algunas variables ambientales. En esta actividad, un grupo de robots debe visitar un conjunto de puntos de interés definidos en un entorno en intervalos de tiempo irregulares con propósitos de seguridad. Los modelos de partullaje multi-robot son utilizados para resolver este problema. Hasta el momento existen trabajos que resuelven este problema utilizando diversos principios matemáticos. Los modelos de patrullaje multi-robot desarrollados en esos trabajos representan un gran avance en este campo de investigación. Sin embargo, los modelos con los mejores resultados no son viables para aplicaciones de seguridad debido a su naturaleza centralizada y determinista. Esta tesis presenta cinco modelos de patrullaje multi-robot distribuidos e impredecibles basados en modelos matemáticos de aprendizaje de Teoría de Juegos. El objetivo del desarrollo de estos modelos está en resolver los inconvenientes presentes en trabajos preliminares. Con esta finalidad, el problema de patrullaje multi-robot se formuló utilizando conceptos de Teoría de Grafos, en la cual se definieron varios juegos en cada vértice de un grafo. Los modelos de patrullaje multi-robot desarrollados en este trabajo de investigación se han validado y comparado con los mejores modelos disponibles en la literatura. Para llevar a cabo tanto la validación como la comparación se ha utilizado un simulador de patrullaje y un grupo de robots reales. Los resultados experimentales muestran que los modelos de patrullaje desarrollados en este trabajo de investigación trabajan mejor que modelos de trabajos previos en el 80% de 150 casos de estudio. Además de esto, estos modelos cuentan con varias características importantes tales como distribución, robustez, escalabilidad y dinamismo. Los avances logrados con este trabajo de investigación dan evidencia del potencial de Teoría de Juegos para desarrollar modelos de patrullaje útiles para proteger infraestructuras. ABSTRACT Game theory principle allows to developing stochastic multi-robot patrolling models to protect critical infrastructures. Critical infrastructures protection is a great concern for countries around the world, mainly due to terrorist attacks in the last decade. In this document, the term infrastructures includes airports, nuclear power plants, and many other facilities. The patrolling problem is defined as the activity of traversing a given environment to monitoring any activity or sensing some environmental variables If this activity were performed by a fleet of robots, they would have to visit some places of interest of an environment at irregular intervals of time for security purposes. This problem is solved using multi-robot patrolling models. To date, literature works have been solved this problem applying various mathematical principles.The multi-robot patrolling models developed in those works represent great advances in this field. However, the models that obtain the best results are unfeasible for security applications due to their centralized and predictable nature. This thesis presents five distributed and unpredictable multi-robot patrolling models based on mathematical learning models derived from Game Theory. These multi-robot patrolling models aim at overcoming the disadvantages of previous work. To this end, the multi-robot patrolling problem was formulated using concepts of Graph Theory to represent the environment. Several normal-form games were defined at each vertex of a graph in this formulation. The multi-robot patrolling models developed in this research work have been validated and compared with best ranked multi-robot patrolling models in the literature. Both validation and comparison were preformed by using both a patrolling simulator and real robots. Experimental results show that the multirobot patrolling models developed in this research work improve previous ones in as many as 80% of 150 cases of study. Moreover, these multi-robot patrolling models rely on several features to highlight in security applications such as distribution, robustness, scalability, and dynamism. The achievements obtained in this research work validate the potential of Game Theory to develop patrolling models to protect infrastructures.
Resumo:
A novel GPU-based nonparametric moving object detection strategy for computer vision tools requiring real-time processing is proposed. An alternative and efficient Bayesian classifier to combine nonparametric background and foreground models allows increasing correct detections while avoiding false detections. Additionally, an efficient region of interest analysis significantly reduces the computational cost of the detections.
Resumo:
El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.
Resumo:
This paper presents a dynamic LM adaptation based on the topic that has been identified on a speech segment. We use LSA and the given topic labels in the training dataset to obtain and use the topic models. We propose a dynamic language model adaptation to improve the recognition performance in "a two stages" AST system. The final stage makes use of the topic identification with two variants: the first on uses just the most probable topic and the other one depends on the relative distances of the topics that have been identified. We perform the adaptation of the LM as a linear interpolation between a background model and topic-based LM. The interpolation weight id dynamically adapted according to different parameters. The proposed method is evaluated on the Spanish partition of the EPPS speech database. We achieved a relative reduction in WER of 11.13% over the baseline system which uses a single blackground LM.
Resumo:
Chemical process accidents still occur and cost billions of dollars and, what is worse, many human lives. That means that traditional hazard analysis techniques are not enough mainly owing to the increase of complexity and size of chemical plants. In the last years, a new hazard analysis technique has been developed, changing the focus from reliability to system theory and showing promising results in other industries such as aeronautical and nuclear. In this paper, we present an approach for the application of STAMP and STPA analysis developed by Leveson in 2011 to the process industry.
Resumo:
The Mouse Tumor Biology (MTB) Database serves as a curated, integrated resource for information about tumor genetics and pathology in genetically defined strains of mice (i.e., inbred, transgenic and targeted mutation strains). Sources of information for the database include the published scientific literature and direct data submissions by the scientific community. Researchers access MTB using Web-based query forms and can use the database to answer such questions as ‘What tumors have been reported in transgenic mice created on a C57BL/6J background?’, ‘What tumors in mice are associated with mutations in the Trp53 gene?’ and ‘What pathology images are available for tumors of the mammary gland regardless of genetic background?’. MTB has been available on the Web since 1998 from the Mouse Genome Informatics web site (http://www.informatics.jax.org). We have recently implemented a number of enhancements to MTB including new query options, redesigned query forms and results pages for pathology and genetic data, and the addition of an electronic data submission and annotation tool for pathology data.
Resumo:
Author: Kerry W. Holton Title: SCHLEIERMACHER’S DOCTRINE OF BIBLICAL AUTHORITY: AN ALTERNATIVE TO CONTENT-BASED/SUPERNATURALIST AND FUNCTION- BASED/RATIONALIST MODELS Advisor: Theodore M. Vial, Jr. Degree Date: August 2015 This dissertation examines Friedrich Schleiermacher’s understanding of biblical authority and argues that, as an alternative to strictly supernaturalistic and rationalistic models, his understanding allows the New Testament to speak authoritatively in Christian religion in an age of critical, historical awareness. After classifying Schleiermacher’s position in a typology of the doctrine of biblical authority, this dissertation explores his conception of divine revelation and inspiration vis-à-vis scripture. It demonstrates that although he did not believe there is warrant for the claim of a direct connection between divine revelation and scripture, or that scripture is the foundation of faith, he nonetheless asserted that the New Testament is authoritative. He asserted the normative authority of the New Testament on the basis that it is the first presentation of Christian faith. This dissertation examines Schleiermacher’s “canon within the canon,” as well as his denial that the Old Testament shares the same normative worth and inspiration of the New. Although this dissertation finds difficulty with some of Schleiermacher’s views regarding the Old Testament, it names two significant strengths of what is identified as his evangelical, content-based, and rationalist approach to biblical authority. First, it recognizes and values the co-presence and co-activity of the supernatural and the natural !ii in the production of the New Testament canon. This allows both scripture and the church to share religious authority. Second, it allows Christian faith and the historical-method to coexist, as it does not require people to contradict what they know to be the case about science, history, and philosophy. Thus, this dissertation asserts that Schleiermacher’s understanding of biblical authority is a robust one, since, for him, the authority of scripture does not lie in some property of the texts themselves that historians or unbelievers can take away.
Resumo:
Two predictive models are developed in this article: the first is designed to predict people's attitudes to alcoholic drinks, while the second sets out to predict the use of alcohol in relation to selected individual values. University students (N = 1,500) were recruited through stratified sampling based on sex and academic discipline. The questionnaire used obtained information on participants' alcohol use, attitudes and personal values. The results show that the attitudes model correctly classifies 76.3% of cases. Likewise, the model for level of alcohol use correctly classifies 82% of cases. According to our results, we can conclude that there are a series of individual values that influence drinking and attitudes to alcohol use, which therefore provides us with a potentially powerful instrument for developing preventive intervention programs.
Resumo:
This paper describes a study and analysis of surface normal-base descriptors for 3D object recognition. Specifically, we evaluate the behaviour of descriptors in the recognition process using virtual models of objects created from CAD software. Later, we test them in real scenes using synthetic objects created with a 3D printer from the virtual models. In both cases, the same virtual models are used on the matching process to find similarity. The difference between both experiments is in the type of views used in the tests. Our analysis evaluates three subjects: the effectiveness of 3D descriptors depending on the viewpoint of camera, the geometry complexity of the model and the runtime used to do the recognition process and the success rate to recognize a view of object among the models saved in the database.
Resumo:
The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging-based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging-based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise-free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum.
Resumo:
Superstructure approaches are the solution to the difficult problem which involves the rigorous economic design of a distillation column. These methods require complex initialization procedures and they are hard to solve. For this reason, these methods have not been extensively used. In this work, we present a methodology for the rigorous optimization of chemical processes implemented on a commercial simulator using surrogate models based on a kriging interpolation. Several examples were studied, but in this paper, we perform the optimization of a superstructure for a non-sharp separation to show the efficiency and effectiveness of the method. Noteworthy that it is possible to get surrogate models accurate enough with up to seven degrees of freedom.
Resumo:
For non-negative random variables with finite means we introduce an analogous of the equilibrium residual-lifetime distribution based on the quantile function. This allows us to construct new distributions with support (0, 1), and to obtain a new quantile-based version of the probabilistic generalization of Taylor's theorem. Similarly, for pairs of stochastically ordered random variables we come to a new quantile-based form of the probabilistic mean value theorem. The latter involves a distribution that generalizes the Lorenz curve. We investigate the special case of proportional quantile functions and apply the given results to various models based on classes of distributions and measures of risk theory. Motivated by some stochastic comparisons, we also introduce the “expected reversed proportional shortfall order”, and a new characterization of random lifetimes involving the reversed hazard rate function.
Resumo:
Statistical machine translation (SMT) is an approach to Machine Translation (MT) that uses statistical models whose parameter estimation is based on the analysis of existing human translations (contained in bilingual corpora). From a translation student’s standpoint, this dissertation aims to explain how a phrase-based SMT system works, to determine the role of the statistical models it uses in the translation process and to assess the quality of the translations provided that system is trained with in-domain goodquality corpora. To that end, a phrase-based SMT system based on Moses has been trained and subsequently used for the English to Spanish translation of two texts related in topic to the training data. Finally, the quality of this output texts produced by the system has been assessed through a quantitative evaluation carried out with three different automatic evaluation measures and a qualitative evaluation based on the Multidimensional Quality Metrics (MQM).
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.