980 resultados para Hand strength
Resumo:
Adsorption of aqueous Pb(II) and Cu(II) on α-quartz was studied as a function of time, system surface area, and chemical speciation. Experimental systems contained sodium as a major cation, hydroxide, carbonate, and chloride as major anions, and covered the pH range 4 to 8. In some cases citrate and EDTA were added as representative organic complexing agents. The adsorption equilibria were reached quickly, regardless of the system surface area. The positions of the adsorption equilibria were found to be strongly dependent on pH, ionic strength and concentration of citrate and EDTA. The addition of these non-adsorbing ligands resulted in a competition between chelation and adsorption. The experimental work also included the examination of the adsorption behavior of the doubly charged major cations Ca(II) and Mg(II) as a function of pH.
The theoretical description of the experimental systems was obtained by means of chemical equilibrium-plus-adsorption computations using two adsorption models: one mainly electrostatic (the James-Healy Model), and the other mainly chemical (the Ion Exchange-Surface Complex Formation Model). Comparisons were made between these two models.
The main difficulty in the theoretical predictions of the adsorption behavior of Cu(II) was the lack of the reliable data for the second hydrolysis constant(*β_2) The choice of the constant was made on the basis of potentiometric titratlons of Cu^(2+)
The experimental data obtained and the resulting theoretical observations were applied in models of the chemical behavior of trace metals in fresh oxic waters, with emphasis on Pb(II) and Cu(II).
Resumo:
[ES]El objetivo de este trabajo de fin de grado es analizar la influencia que tiene la cuantía y orientación de fibras metálicas presentes en el interior de probetas de hormigón autocompactante y cuyo objetivo es reforzar y aumentar la resistencia a tracción de este material. Se expondrán las propiedades que combina el HACRFA gracias a la autocompactación del hormigón y la inclusión de fibras en su interior y los beneficios que este nuevo material aporta. Por otro lado, se tratara de situar este estudio en un contexto, analizando a la vez cuál es el alcance y los objetivos más importantes que se han tenido en cuenta. A continuación, y a modo de complementación de su contexto, este trabajo tiene un estado del arte, en el que se mencionarán métodos y ensayos necesarios para llegar a un resultado que permita predecir cuál será la resistencia del material, y por tanto su tenacidad o capacidad de absorber energía, sin necesidad de emplear más que un método fácil y rápido, obviando el resto de ensayos destructivos utilizados en este trabajo. Para tal fin, se establece una metodología que, gracias a ensayos de laboratorio, permita establecer una relación entre el método sencillo que se ha mencionado, el método inductivo, y un resultado teórico de la tenacidad que presenta el HACRFA. Se observará cómo la desviación entre los ensayos experimentales y los resultados teóricos obtenidos es prácticamente nula, despreciando situaciones en las que se presenten comportamientos muy diferentes debido a fallos durante los ensayos.
Resumo:
[no abstract]
Resumo:
Strength at extreme pressures (>1 Mbar or 100 GPa) and high strain rates (106-108 s-1) of materials is not well characterized. The goal of the research outlined in this thesis is to study the strength of tantalum (Ta) at these conditions. The Omega Laser in the Laboratory for Laser Energetics in Rochester, New York is used to create such extreme conditions. Targets are designed with ripples or waves on the surface, and these samples are subjected to high pressures using Omega’s high energy laser beams. In these experiments, the observational parameter is the Richtmyer-Meshkov (RM) instability in the form of ripple growth on single-mode ripples. The experimental platform used for these experiments is the “ride-along” laser compression recovery experiments, which provide a way to recover the specimens having been subjected to high pressures. Six different experiments are performed on the Omega laser using single-mode tantalum targets at different laser energies. The energy indicates the amount of laser energy that impinges the target. For each target, values for growth factor are obtained by comparing the profile of ripples before and after the experiment. With increasing energy, the growth factor increased.
Engineering simulations are used to interpret and correlate the measurements of growth factor to a measure of strength. In order to validate the engineering constitutive model for tantalum, a series of simulations are performed using the code Eureka, based on the Optimal Transportation Meshfree (OTM) method. Two different configurations are studied in the simulations: RM instabilities in single and multimode ripples. Six different simulations are performed for the single ripple configuration of the RM instability experiment, with drives corresponding to laser energies used in the experiments. Each successive simulation is performed at higher drive energy, and it is observed that with increasing energy, the growth factor increases. Overall, there is favorable agreement between the data from the simulations and the experiments. The peak growth factors from the simulations and the experiments are within 10% agreement. For the multimode simulations, the goal is to assist in the design of the laser driven experiments using the Omega laser. A series of three-mode and four-mode patterns are simulated at various energies and the resulting growth of the RM instability is computed. Based on the results of the simulations, a configuration is selected for the multimode experiments. These simulations also serve as validation for the constitutive model and the material parameters for tantalum that are used in the simulations.
By designing samples with initial perturbations in the form of single-mode and multimode ripples and subjecting these samples to high pressures, the Richtmyer-Meshkov instability is investigated in both laser compression experiments and simulations. By correlating the growth of these ripples to measures of strength, a better understanding of the strength of tantalum at high pressures is achieved.
Resumo:
O objetivo deste trabalho foi avaliar o efeito do selamento dentinário imediato na cimentação definitiva de restaurações cerâmicas (Empress2Ivoclar Vivadent), levando em consideração a influência de diferentes métodos de remoção dos restos de cimento provisório da superfície dentinária previamente selada. Para isso foram utilizados 72 molares, hígidos, conseguidos no banco de dentes da Universidade do Estado do Rio de Janeiro. Os dentes foram divididos em nove grupos, os três primeiros serviram como grupo controle, onde não houve contaminação com nenhum cimento provisório, sendo eles: G1, onde o selamento e a cimentação definitiva foram feitas 15 dias após a confecção dos preparos cavitários; G2, onde o selamento dentinário foi feito imediatamente após o preparo e a cimentação definitiva após 15 dias; G3, onde o preparo, selamento e cimentação definitiva foram feitos no mesmo momento. Os próximos grupos foram os do selamento tardio, onde o sistema adesivo foi aplicado somente no momento da cimentação. Nestes grupos, após o preparo foram cimentadas restaurações provisórias com um cimento livre de eugenol (Temp BondNE) e após 15 dias as restaurações provisórias foram removidas e os restos de cimento limpos com diferentes métodos: G4: remoção com instrumento manual; G5: remoção com jato de bicarbonato; G6: remoção com pontas de ultra-som; após esta limpeza o sistema adesivo foi aplicado e as restaurações cerâmicas cimentadas. Por último foram os grupos do selamento dentinário imediato, onde o sistema adesivo foi aplicado imediatamente após a confecção dos preparos cavitários e em seguida foi feita a cimentação das restaurações provisórias. Após 15 dias as restaurações provisórias foram removidas, os restos de cimento foram limpos com os diferentes métodos: G7: remoção com instrumento manual; G8: remoção com jato de bicarbonato; G9: remoção com pontas de ultra-som. Após a limpeza as restaurações cerâmicas foram cimentadas. Para todos os grupos o sistema adesivo utilizado foi o Optibond FL Kerr e o cimento resinoso foi o Rely X ARC3M/ESPE. Vinte e quatro horas após as cimentações cerâmicas os corpos de prova foram submetidos ao ensaio mecânico de push out em uma máquina de ensaios universais EMIC DL. Os valores de resistência de união foram obtidos em KgF, convertidos em MPa e analisados estatisticamente. O teste de ANOVA mostrou que houve diferença estatisticamente significante entre os grupos (p≤0,05) e em seguida o t-teste mostrou que a técnica do selamento imediato resultou nos melhores valores de resistência de união. Por último, o teste de comparações múltiplas Student-Newman-Keuls (Teste SNK) mostrou que o método de limpeza dos restos de cimento provisório da superfície dentinária apresenta influência na resistência de união das restaurações cerâmicas. Com base nos resultados pôde-se concluir que a técnica do selamento imediato promoveu maior resistência adesiva para as restaurações cerâmicas e quanto ao método de limpeza, o melhor resultado, independente da técnica adesiva utilizada, foi a remoção com as pontas de ultrasson.
Resumo:
An understanding of the mechanics of nanoscale metals and semiconductors is necessary for the safe and prolonged operation of nanostructured devices from transistors to nanowire- based solar cells to miniaturized electrodes. This is a fascinating but challenging pursuit because mechanical properties that are size-invariant in conventional materials, such as strength, ductility and fracture behavior, can depend critically on sample size when materials are reduced to sub- micron dimensions. In this thesis, the effect of nanoscale sample size, microstructure and structural geometry on mechanical strength, deformation and fracture are explored for several classes of solid materials. Nanocrystalline platinum nano-cylinders with diameters of 60 nm to 1 μm and 12 nm sized grains are fabricated and tested in compression. We find that nano-sized metals containing few grains weaken as sample diameter is reduced relative to grain size due to a change from deformation governed by internal grains to surface grain governed deformation. Fracture at the nanoscale is explored by performing in-situ SEM tension tests on nanocrystalline platinum and amorphous, metallic glass nano-cylinders containing purposely introduced structural flaws. It is found that failure location, mechanism and strength are determined by the stress concentration with the highest local stress whether this is at the structural flaw or a microstructural feature. Principles of nano-mechanics are used to design and test mechanically robust hierarchical nanostructures with structural and electrochemical applications. 2-photon lithography and electroplating are used to fabricate 3D solid Cu octet meso-lattices with micron- scale features that exhibit strength higher than that of bulk Cu. An in-situ SEM lithiation stage is developed and used to simultaneously examine morphological and electrochemical changes in Si-coated Cu meso-lattices that are of interest as high energy capacity electrodes for Li-ion batteries.
Resumo:
In this investigation it was found that the instability failure of curved sheet is nearly independent of the type of loading and is primarily a function of the maximum stress, radius-thickness ration and modulus of elasticity. A method of correlating the critical stress of thin sheet under several different types of loading is given. An explanation for the experimental critical stress of thin walled cylinders under bending being greater than that for pure compression is given. The strength of unstiffened thin walled circular nose sections under pure bending was found to be controlled by local instability of the section, rather than a large scale instability. The equation of local instability of curved sheet gives values which are in fair agreement with those found experimentally.
The strength of elliptical cylinders supported at the minor axis under bending plus shear loads is governed primarily by the bending strength, and is little effected by the sheer force unless the amount of shear is quite large with respect to the moment. The effect of increasing the amount of elliptically greatly reduces the bending and shear strength of nose sections. Under torsional loads the stress at buckling falls off as the ration of the major to minor axis increases but the failure stress decreases at a slower rate than the buckling stress. The length effect of semi-circular sections under torsion is similar to that of a circular tube, and can be obtained by Donnell's theoretical equation.
Resumo:
Constitutive modeling in granular materials has historically been based on macroscopic experimental observations that, while being usually effective at predicting the bulk behavior of these type of materials, suffer important limitations when it comes to understanding the physics behind grain-to-grain interactions that induce the material to macroscopically behave in a given way when subjected to certain boundary conditions.
The advent of the discrete element method (DEM) in the late 1970s helped scientists and engineers to gain a deeper insight into some of the most fundamental mechanisms furnishing the grain scale. However, one of the most critical limitations of classical DEM schemes has been their inability to account for complex grain morphologies. Instead, simplified geometries such as discs, spheres, and polyhedra have typically been used. Fortunately, in the last fifteen years, there has been an increasing development of new computational as well as experimental techniques, such as non-uniform rational basis splines (NURBS) and 3D X-ray Computed Tomography (3DXRCT), which are contributing to create new tools that enable the inclusion of complex grain morphologies into DEM schemes.
Yet, as the scientific community is still developing these new tools, there is still a gap in thoroughly understanding the physical relations connecting grain and continuum scales as well as in the development of discrete techniques that can predict the emergent behavior of granular materials without resorting to phenomenology, but rather can directly unravel the micro-mechanical origin of macroscopic behavior.
In order to contribute towards closing the aforementioned gap, we have developed a micro-mechanical analysis of macroscopic peak strength, critical state, and residual strength in two-dimensional non-cohesive granular media, where typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain-scale counterparts (e.g., inter-particle contact forces, fabric, particle displacements, and velocities), providing an across-the-scale basis for better understanding and modeling granular media.
In the same way, we utilize a new DEM scheme (LS-DEM) that takes advantage of a mathematical technique called level set (LS) to enable the inclusion of real grain shapes into a classical discrete element method. After calibrating LS-DEM with respect to real experimental results, we exploit part of its potential to study the dependency of critical state (CS) parameters such as the critical state line (CSL) slope, CSL intercept, and CS friction angle on the grain's morphology, i.e., sphericity, roundness, and regularity.
Finally, we introduce a first computational algorithm to ``clone'' the grain morphologies of a sample of real digital grains. This cloning algorithm allows us to generate an arbitrary number of cloned grains that satisfy the same morphological features (e.g., roundness and aspect ratio) displayed by their real parents and can be included into a DEM simulation of a given mechanical phenomenon. In turn, this will help with the development of discrete techniques that can directly predict the engineering scale behavior of granular media without resorting to phenomenology.