693 resultados para Graeme Turner
Resumo:
Integrations of a fully-coupled climate model with and without flux adjustments in the equatorial oceans are performed under 2×CO2 conditions to explore in more detail the impact of increased greenhouse gas forcing on the monsoon-ENSO system. When flux adjustments are used to correct some systematic model biases, ENSO behaviour in the modelled future climate features distinct irregular and periodic (biennial) regimes. Comparison with the observed record yields some consistency with ENSO modes primarily based on air-sea interaction and those dependent on basinwide ocean wave dynamics. Simple theory is also used to draw analogies between the regimes and irregular (stochastically forced) and self-excited oscillations respectively. Periodic behaviour is also found in the Asian-Australian monsoon system, part of an overall biennial tendency of the model under these conditions related to strong monsoon forcing and increased coupling between the Indian and Pacific Oceans. The tropospheric biennial oscillation (TBO) thus serves as a useful descriptor for the coupled monsoon-ENSO system in this case. The presence of obvious regime changes in the monsoon-ENSO system on interdecadal timescales, when using flux adjustments, suggests there may be greater uncertainty in projections of future climate, although further modelling studies are required to confirm the realism and cause of such changes.
Resumo:
The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change.
Resumo:
The impact of systematic model errors on a coupled simulation of the Asian Summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon-ENSO teleconnection is rather poorly represented in the GCM. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the GCM, the monsoon-ENSO teleconnection is better simulated, particularly the lag-lead relationships in which weak monsoons precede the peak of El Nino. In part this is related to changes in the characteristics of El Nino, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability.
Resumo:
Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.
Resumo:
Uncertainties in changes to the spatial distribution and magnitude of the heaviest extremes of daily monsoon rainfall over India are assessed in the doubled CO2 climate change scenarios in the IPCC Fourth Assessment Report. Results show diverse changes to the spatial pattern of the 95th and 99th subseasonal percentiles, which are strongly tied to the mean precipitation change during boreal summer. In some models, the projected increase in heaviest rainfall over India at CO2 doubling is entirely predictable based upon the surface warming and the Clausius–Clapeyron relation, a result which may depend upon the choice of convection scheme. Copyright © 2009 Royal Meteorological Society and Crown Copyright
Resumo:
Changes to the behaviour of subseasonal precipitation extremes and active-break cycles of the Indian summer monsoon are assessed in this study using pre-industrial and 2 × CO2 integrations of the Hadley Centre coupled model HadCM3, which is able to simulate the monsoon seasonal cycle reasonably. At 2 × CO2, mean summer rainfall increases slightly, especially over central and northern India. The mean intensity of daily precipitation during the monsoon is found to increase, consistent with fewer wet days, and there are increases to heavy rain events beyond changes in the mean alone. The chance of reaching particular thresholds of heavy rainfall is found to approximately double over northern India, increasing the likelihood of damaging floods on a seasonal basis. The local distribution of such projections is uncertain, however, given the large spread in mean monsoon rainfall change and associated extremes amongst even the most recent coupled climate models. The measured increase of the heaviest precipitation events over India is found to be broadly in line with the degree of atmospheric warming and associated increases in specific humidity, lending a degree of predictability to changes in rainfall extremes. Active-break cycles of the Indian summer monsoon, important particularly due to their effect on agricultural output, are shown to be reasonably represented in HadCM3, in particular with some degree of northward propagation. We note an intensification of both active and break events, particularly when measured against the annual cycle, although there is no suggestion of any change to the duration or likelihood of monsoon breaks. Copyright © 2009 Royal Meteorological Society
Resumo:
The literature on vertical disparity is complicated by the fact that several different definitions of the term “vertical disparity” are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparities. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence, and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparities expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position—gaze direction, convergence, torsion, cyclovergence, and vertical misalignment—can be derived from the vertical disparity field and its derivatives at the fovea.
Resumo:
New data show that island arc rocks have (Pb-210/Ra-226)(o) ratios which range from as low as 0.24 up to 2.88. In contrast, (Ra-22S/Th-232) appears always within error of I suggesting that the large Ra-226-excesses observed in arc rocks were generated more than 30 years ago. This places a maximum estimate on melt ascent velocities of around 4000 m/year and provides further confidence that the Ra-226 excesses reflect deep (source) processes rather than shallow level alteration or seawater contamination. Conversely, partial melting must have occurred more than 30 years prior to eruption. The Pb-210 deficits are most readily explained by protracted magma degassing. Using published numerical models, the data suggest that degassing occurred continuously for periods up to several decades just prior to eruption but no link with eruption periodicity was found. Longer periods are required if degassing is discontinuous, less than 100% efficient or if magma is recharged or stored after degassing. The long durations suggest much of this degassing occurs at depth with implications for the formation of hydrothermal and copper-porphyry systems. A suite of lavas erupted in 1985-1986 from Sangeang Api volcano in the Sunda arc are characterised by deficits of Pb-210 relative to Ra-226 from which 6-8 years of continuous Rn-222 degassing would be inferred from recent numerical models. These data also form a linear (Pb-210)/Pb-(Ra-226)/Pb array which might be interpreted as a 71-year isochron. However, the array passes through the origin suggesting displacement downwards from the equiline in response to degassing and so the slope of the array is inferred not to have any age significance. Simple modelling shows that the range of (Ra-226)/Pb ratios requires thousands of years to develop consistent with differentiation occurring in response to cooling at the base of the crust. Thus, degassing post-dated, and was not responsible for magma differentiation. The formation, migration and extraction of gas bubbles must be extremely efficient in mafic magma whereas the higher viscosity of more siliceous magmas retards the process and can lead to Pb-210 excesses. A possible negative correlation between (Pb-210/Ra-226)(o) and SO2 emission rate requires further testing but may have implications for future eruptions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Fazzan Basin of south-west Libya is at present arid with less than 20 mm of rainfall per annum. However, regionally extensive limestones, lacustrine sands and coquina (fossiliferous carbonate rock) deposits show that the Fazzan Basin previously contained a large palaeolake, indicating that the climate in the past was more humid. Optically stimulated luminescence (OSL) dating techniques have been applied to key lacustrine deposits within the basin in an attempt to provide an internally consistent chronology for this humidity record. Results indicate that palaeolake sediments within the Fazzan Basin record a very long history of palacohydrological change, ranging from present day and conditions to humidity capable of sustaining a lake with an approximate area of 76,250 km(2). The existence of humid periods in mid oxygen isotope stage 5 and the early Holocene is confirmed. An older lacustrine event, tentatively correlated to oxygen isotope stage 11, is also recognized. In addition, evidence is presented for at least two humid phases beyond the age range over which the conventional OSL dating technique is applicable. This study demonstrates that OSL dating of palaeolake sediments within the Fazzan Basin offers the potential to provide a detailed record of North African humidity spanning several glacial-interglacial cycles. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The importance of the interplay between degassing and crystallization before and after the eruption of Mount St. Helens (Washington, USA) in 1980 is well established. Here, we show that degassing occurred over a period of decades to days before eruptions and that the manner of degassing, as deduced from geochemicai signatures within the magma, was characteristic of the eruptive style. Trace element (lithium) and short-lived radioactive isotope (lead-210 and radium-226) data show that ascending magma stalled within the conduit, leading to the accumulation of volatiles and the formation of lead-210 excesses, which signals the presence of degassing magma at depth.