973 resultados para Geotechnical mapping
Resumo:
BACKGROUND: Individuals with osteoporosis are predisposed to hip fracture during trips, stumbles or falls, but half of all hip fractures occur in those without generalised osteoporosis. By analysing ordinary clinical CT scans using a novel cortical thickness mapping technique, we discovered patches of markedly thinner bone at fracture-prone regions in the femurs of women with acute hip fracture compared with controls. METHODS: We analysed CT scans from 75 female volunteers with acute fracture and 75 age- and sex-matched controls. We classified the fracture location as femoral neck or trochanteric before creating bone thickness maps of the outer 'cortical' shell of the intact contra-lateral hip. After registration of each bone to an average femur shape and statistical parametric mapping, we were able to visualise and quantify statistically significant foci of thinner cortical bone associated with each fracture type, assuming good symmetry of bone structure between the intact and fractured hip. The technique allowed us to pinpoint systematic differences and display the results on a 3D average femur shape model. FINDINGS: The cortex was generally thinner in femoral neck fracture cases than controls. More striking were several discrete patches of statistically significant thinner bone of up to 30%, which coincided with common sites of fracture initiation (femoral neck or trochanteric). INTERPRETATION: Femoral neck fracture patients had a thumbnail-sized patch of focal osteoporosis at the upper head-neck junction. This region coincided with a weak part of the femur, prone to both spontaneous 'tensile' fractures of the femoral neck, and as a site of crack initiation when falling sideways. Current hip fracture prevention strategies are based on case finding: they involve clinical risk factor estimation to determine the need for single-plane bone density measurement within a standard region of interest (ROI) of the femoral neck. The precise sites of focal osteoporosis that we have identified are overlooked by current 2D bone densitometry methods.
Resumo:
Distributed hybrid testing is a natural extension to and builds upon the local hybrid testing technique. Taking advantage of the hybrid nature of the test, it allows a sharing of resources and expertise between researchers from different disciplines by connecting multiple geographically distributed sites for joint testing. As part of the UK-NEES project, a successful series of three-site distributed hybrid tests have been carried out between Bristol, Cambridge and Oxford Universities. The first known multi-site distributed hybrid tests in the UK, they connected via a dedicated fibre network, using custom software, the geotechnical centrifuge at Cambridge to structural components at Bristol and Oxford. These experiments were to prove the connection and useful insights were gained into the issues involved with this distributed environment. A wider aim is towards providing a flexible testing framework to facilitate multi-disciplinary experiments such as the accurate investigation of the influence of foundations on structural systems under seismic and other loading. Time scaling incompatibilities mean true seismic soil structure interaction using a centrifuge at g is not possible, though it is clear that distributed centrifuge testing can be valuable in other problems. Development is continuing to overcome the issues encountered, in order to improve future distributed tests in the UK and beyond.
Resumo:
Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil–structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
Demand for aluminum in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this exceptional growth to continue so that demand will reach 2-3 times today's levels by 2050. Aluminum production uses 3.5% of global electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at least a 75% reduction in CO2 emissions per tonne of aluminum produced--a challenging prospect. In this paper we trace the global flows of aluminum from liquid metal to final products, revealing for the first time a complete map of the aluminum system and providing a basis for future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. First, around half of all liquid aluminum (~39 Mt) produced each year never reaches a final product, and a detailed discussion of these high yield losses shows significant opportunities for improvement. Second, aluminum recycling, which avoids the high energy costs and emissions of electrolysis, requires signification "dilution" (~ 8 Mt) and "cascade" (~ 6 Mt) flows of higher aluminum grades to make up for the shortfall in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling.
Resumo:
Construction of geotechnical structures produces various environmental impacts. These include depletion of limited natural resources, generation of wastes and harmful substances during material productions and construction, ineffective usage of energy during processing of raw materials into construction materials, and emissions of unwanted gasses during transportation of materials and usage of equipments. With increasing interests in sustainability at the global scale, there is a need to develop a methodology that can assess environmental impacts at such scale for geotechnical construction. Using embodied energy and gas emission, quantitative measures of environmental impact are evaluated using a case study of a new high speed railway line construction in the UK. Based on the results, the keys to energy savings are (a) to optimise the usage of materials with high embodied energy intensity value (b) to optimise the transportation network and logistics for processes using primarily low embodied energy intensity materials and (c) to reuse as much materials on-site as possible to minimise the quantity of spoils or distance to disposal sites. The evaluated embodied energy and embodied carbon values are compared to those of other types of structures and of other activities and carbon tax values. Such comparisons can be used to discuss among various interested parties (clients, contractors, consultants, policy makers, etc) to make the construction industry more energy efficient. © Springer Science+Business Media B.V. 2011.
Resumo:
The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size. © 2005 IOP Publishing Ltd.
Resumo:
Today's fast-paced, dynamic environments mean that for organizations to keep "ahead of the game", engineering managers need to maximize current opportunities and avoid repeating past mistakes. This article describes the development study of a collaborative strategic management tool - the Experience Scan to capture past experience and apply learning from this to present and future situations. Experience Scan workshops were held in a number of different technology organizations, developing and refining the tool until its format stabilized. From participants' feedback, the workshop-based tool was judged to be a useful and efficient mechanism for communication and knowledge management, contributing to organizational learning.