867 resultados para Geometry of Fuzzy sets
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
Enantio-specific interactions on intrinsically chiral or chirally modified surfaces can be identified experimentally via comparison of the adsorption geometries of similar nonchiral and chiral molecules. Information about the effects of substrate-related and in interactions on the adsorption geometry of glycine, the only natural nonchiral amino acid, is therefore important for identifying enantio-specific interactions of larger chiral amino acids. We have studied the long- and short-range adsorption geometry and bonding properties of glycine on the intrinsically chiral Cu{531} surface with low-energy electron diffraction, near-edge X-ray absorption One structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. For coverages between 0.15 and 0.33 ML (saturated chemisorbed layer) and temperatures between 300 and 430 K, glycine molecules adsorb in two different azimuthal orientations, which are associated with adsorption sites on the {110} and {311} microfacets of Cu{531}. Both types of adsorption sites allow a triangular footprint with surface bonds through the two oxygen atoms and the nitrogen atom. The occupation of the two adsorption sites is equal for all coverages, which can be explained by pair formation due to similar site-specific adsorption energies and the possibility of forming hydrogen bonds between molecules on adjacent {110} and {311} sites. This is not the ease for alanine and points toward higher site specificity in the case of alanine, which is eventually responsible for the enantiomeric differences observed for the alanine system.
Resumo:
Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic−inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of l- and d-enantiomers aggregate into superstructures with chiral (−1 2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β−OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.
A refined LEED analysis of water on Ru{0001}: an experimental test of the partial dissociation model
Resumo:
Despite a number of earlier studies which seemed to confirm molecular adsorption of water on close-packed surfaces of late transition metals, new controversy has arisen over a recent theoretical work by Feibelman, according to which partial dissociation occurs on the Ru{0001} surface leading to a mixed (H2O + OH + H) superstructure. Here, we present a refined LEED-IV analysis of the (root3 x root3)R30degrees-D2O-Ru{0001} structure, testing explicitly this new model by Feibelman. Our results favour the model proposed earlier by Held and Menzel assuming intact water molecules with almost coplanar oxygen atoms and out-of-plane hydrogen atoms atop the slightly higher oxygen atoms. The partially dissociated model with an almost identical arrangement of oxygen atoms can, however, not unambiguously be excluded, especially when the single hydrogen atoms are not present in the surface unit cell. In contrast to the earlier LEED-IV analysis, we can, however, clearly exclude a buckled geometry of oxygen atoms.
Resumo:
The interaction between pentagalloyl glucose (PGG) and two globular proteins, bovine serum albumin (BSA) and ribulose-1,5-bisphosphate carboxylase oxygenase (rubisco), was investigated by isothermal titration calorimetry (ITC). ITC data fit to a binding model consisting of two sets of multiple binding sites, which reveal similarities in the mode of binding of PGG to BSA and rubisco. In both cases, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface, which promotes aggregation and precipitation of the PGG-protein complex. This model was confirmed by turbidimetry analysis of the PGG-BSA interaction. Analysis of tryptophan fluorescence quenching during the interaction of PGG with BSA suggests that binding of PGG leads to some conformational changes that are energetically closer to the unfolded state of the BSA structure, because small red shifts in the resulting emission spectra were observed.
Resumo:
Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole–Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries.
Resumo:
We present a quantitative low energy electron diffraction (LEED) surface-crystallograpic study of the complete adsorption geometry of glycine adsorbed on Cu{110} in the ordered p(3×2) phase. The glycine molecules form bonds to the surface through the N atoms of the amino group and the two O atoms of the de-protonated carboxylate group, each with separate Cu atoms such that every Cu atom in the first layer is involved in a bond. Laterally, N atoms are nearest to the atop site (displacement 0.41 Å). The O atoms are asymmetrically displaced from the atop site by 0.54 Å and 1.18 Å with two very different O-Cu bond lengths of 1.93 Å and 2.18 Å. The atom positions of the upper-most Cu layers show small relaxations within 0.07 Å of the bulk-truncated surface geometry. The unit cell of the adsorbate layer consists of two glycine molecules, which are related by a glide-line symmetry operation. This study clearly shows that a significant coverage of adsorbate structures without this glide-line symmetry must be rejected, both on the grounds of the energy dependence of the spot intensities (LEED-IV curves) and of systematic absences in the LEED pattern.
Resumo:
Studies towards the biomimetic synthesis of mycaperoxide B (1) are described. We have established the synthesis of four diastereoisomers of mycaperoxide B methyl ester (1a) by employing a Michael addition across an α,β-unsaturated ester precursor 2 as the key step. This result strongly suggestsstereocontrol in the addition of the hydroperoxide functionality to the E double bond and discloses the importance of choosing the correct geometry of the α,β-unsaturated double bond when attempting to synthesise mycaperoxide B. Four diastereoisomeric tetrahydrofurans derived from an intramolecular rearrangement of the 1,2-dioxolane enolate 12 were also isolated and characterised.
Resumo:
In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.
Resumo:
Two phenoxo bridged dinuclear Cu(II) complexes, [Cu2L2(NO2)(2)] (1) and [Cu2L2(NO3)(2)] (2) have been synthesized using the tridentate reduced Schiff-base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol (HL). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The structures of the two compounds are very similar having the same tridentate chelating ligand (L) and mono-dentate anionic ligand nitrite for 1 and nitrate for 2. In both complexes Cu(II) is penta-coordinated but the square pyramidal geometry of the copper ions is severely distorted (Addison parameter (tau) = 0.33) in 1 while the distortion is quite small (average tau = 0.11) in 2. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -140.8 and -614.7 cm (1) for 1 and 2, respectively) show that the coupling is much stronger in 2.
Resumo:
The phenoxo-bridged dinuclear Cu-II complex [Cu2L2-(NCNCN)(2)] (1) and the dicyanamide-bridged molecular rectangle [Cu4L4{mu(1,5)-(NCNCN)(2)}]center dot(ClO4)(2)(H2O)(2) (2) were synthesized using the tridentate reduced Schiff-base ligand HL {2-[(2-dimethylamino-ethylamino) methyl] phenol}. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 2 was formed through the joining of the phenoxo-bridged dinuclear Cu2O2 cores of 1 via the mu(1,5)-bridging mode of dicyanamide. The structural properties of the Cu2O2 cores in two complexes are significantly different. The geometry of the copper ions is distorted trigonal bipyramid in 1 but is nearly square-pyramidal in 2. These differences have a marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -185.2 and -500.9 cm(-1) for 1 and 2, respectively) differ considerably.
Resumo:
In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.
Resumo:
This conference was an unusual and interesting event. Celebrating 25 years of Construction Management and Economics provides us with an opportunity to reflect on the research that has been reported over the years, to consider where we are now, and to think about the future of academic research in this area. Hence the sub-title of this conference: “past, present and future”. Looking through these papers, some things are clear. First, the range of topics considered interesting has expanded hugely since the journal was first published. Second, the research methods are also more diverse. Third, the involvement of wider groups of stakeholder is evident. There is a danger that this might lead to dilution of the field. But my instinct has always been to argue against the notion that Construction Management and Economics represents a discipline, as such. Granted, there are plenty of university departments around the world that would justify the idea of a discipline. But the vast majority of academic departments who contribute to the life of this journal carry different names to this. Indeed, the range and breadth of methodological approaches to the research reported in Construction Management and Economics indicates that there are several different academic disciplines being brought to bear on the construction sector. Some papers are based on economics, some on psychology and others on operational research, sociology, law, statistics, information technology, and so on. This is why I maintain that construction management is not an academic discipline, but a field of study to which a range of academic disciplines are applied. This may be why it is so interesting to be involved in this journal. The problems to which the papers are applied develop and grow. But the broad topics of the earliest papers in the journal are still relevant today. What has changed a lot is our interpretation of the problems that confront the construction sector all over the world, and the methodological approaches to resolving them. There is a constant difficulty in dealing with topics as inherently practical as these. While the demands of the academic world are driven by the need for the rigorous application of sound methods, the demands of the practical world are quite different. It can be difficult to meet the needs of both sets of stakeholders at the same time. However, increasing numbers of postgraduate courses in our area result in larger numbers of practitioners with a deeper appreciation of what research is all about, and how to interpret and apply the lessons from research. It also seems that there are contributions coming not just from construction-related university departments, but also from departments with identifiable methodological traditions of their own. I like to think that our authors can publish in journals beyond the construction-related areas, to disseminate their theoretical insights into other disciplines, and to contribute to the strength of this journal by citing our articles in more mono-disciplinary journals. This would contribute to the future of the journal in a very strong and developmental way. The greatest danger we face is in excessive self-citation, i.e. referring only to sources within the CM&E literature or, worse, referring only to other articles in the same journal. The only way to ensure a strong and influential position for journals and university departments like ours is to be sure that our work is informing other academic disciplines. This is what I would see as the future, our logical next step. If, as a community of researchers, we are not producing papers that challenge and inform the fundamentals of research methods and analytical processes, then no matter how practically relevant our output is to the industry, it will remain derivative and secondary, based on the methodological insights of others. The balancing act between methodological rigour and practical relevance is a difficult one, but not, of course, a balance that has to be struck in every single paper.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.