965 resultados para Genes Regulatory Sequences


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to isolate and identify the main staphylococcal species causing bovine mastitis in 10 Brazilian dairy herds and study their capability to produce enterotoxins. Herds were selected based on size and use of milking technology, and farms were visited once during the study. All mammary glands of all lactating cows were screened using the California Mastitis Test (CMT) and a strip cup. A single aseptic milk sample (20. mL) was collected from all CMT-positive quarters. Identification of Staphylococcus spp. was performed using conventional microbiology, and PCR was used to determine the presence of enterotoxin-encoding genes (sea, seb, sec, and sed). Of the 1,318 CMT-positive milk samples, Staphylococcus spp. were isolated from 263 (19.9%). Of these isolates, 135 (51%) were coagulase-positive staphylococci (CPS) and 128 (49%) were coagulase-negative staphylococci (CNS). Eighteen different species of CNS were isolated, among which S. warneri, S. epidermidis and S. hyicus were the most frequent. The distribution of Staphylococcus species was different among herds: S. epidermidis was found in 8 herds, S. warneri was found in 7 herds, and S. hyicus in 6 herds. Some of the CNS species (S. saprophyticus ssp. saprophyticus, S. auricularis, S. capitis, and S. chromogenes) were isolated in only one of the farms. Genes related to production of enterotoxins were found in 66% (n = 85) of all CNS and in 35% of the CPS isolates. For both CNS and CPS isolates, the most frequently identified enterotoxin genes were sea, seb, and sec; the prevalence of sea differed between CPS (9.5%) and CNS (35.1%) isolates. Staphylococcus warneri isolates showed a greater percentage of sea than seb, sec, or sed, whereas S. hyicus isolates showed a greater percentage of sea than sec. Over 60% of CNS belonged to 3 major species, which carried 62.2 to 81.3% of the enterotoxin genes. The high prevalence highlights the potential for food poisoning caused by these species. For possible high-risk situations for food poisoning, such as milk produced with total bacterial counts greater than regulatory levels and stored under inappropriate temperatures, monitoring contamination with CNS could be important to protect human health. Because the prevalence of CNS intramammary infections in dairy herds is usually high, and these species can be found in great numbers in bulk milk, identification of risk factors for production of staphylococcal enterotoxins should be considered in future studies. © 2013 American Dairy Science Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Repetitive DNA sequences constitute a great portion of the genome of eukaryotes and are considered key components to comprehend evolutionary mechanisms and karyotypic differentiation. Aiming to contribute to the knowledge of chromosome structure and organization of some repetitive DNA classes in the fish genome, chromosomes of two allopatric populations of Astyanax bockmanni were analyzed using classic cytogenetics techniques and fluorescent in situ hybridization, with probes for ribosomal DNA sequences, histone DNA and transposable elements. These Astyanax populations showed the same diploid number (2n = 50), however with differences in chromosome morphology, distribution of constitutive heterochromatin, and location of 18S rDNA and retroelement Rex3 sites. In contrast, sites for 5S rDNA and H1, H3 and H4 histones showed to be co-located and highly conserved. Our results indicate that dispersion and variability of 18S rDNA and heterochromatin sites are not associated with macro rearrangements in the chromosome structure of these populations. Similarly, distinct evolutionary mechanisms would act upon histone genes and 5S rDNA, contributing to chromosomal association and co-location of these sequences. Data obtained indicate that distinct mechanisms drive the spreading of repetitive DNAs in the genome of A. bockmanni. Also, mobile elements may account for the polymorphism of the major rDNA sites and heterochromatin in this genus. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffea canephora is one of the most economically important coffee species and in Brazil, Conilon is the most widely cultivated plant of this species. Abiotic stresses such as temperature variations and drought periods are factors that significantly affect their production and tend to worsen with globally recognized climate changes. In an attempt to understand the molecular responses of coffee plants in water deficit conditions, recent studies have identified candidate genes (CGs) as CcDREB1D. This gene showed increased expression in response to drought in the leaves of clone 14 (drought tolerant) in relation to the clone 22 (sensitive to drought) of C. canephora Conilon. Based on these results, the identification of DREB genes and their subgroups (SGs) of C. canephora, the objective is to analyze in silico and also in vivo these genes expression in leaf and root of tolerant (14, 73 and 120) and sensitive clones (22) of C. canephora Conilon submitted or not to a water deficit. In silico expressions of all DREB genes were analyzed from the Coffee Genome Hub Database and in vivo expression was performed by the technique "reverse transcription-quantitative PCR" (RT-qPCR). In silico gene expression analysis was possible to identify DREB genes with potential responses to abiotic stresses, corroborating some validated in vivo results. In this analysis, several genes showed differential expression in response to drought among the SGs (IIV), the tolerant and sensitive clones and the leaf and root. These differentially expressed genes were identified as potential CGs and among them, it was found that most tolerant clones showed increased expression in relation to sensitive in response to drought, with higher expression levels for clones 14 and 73. These highest levels were observed in leaves compared to the roots and SG-I stood at greater number of genes expressed in response to drought. These results suggest that DREB CGs, as Cc05_g06840, Cc02_g03420 e Cc08_g13960, play an important role in the regulatory mechanisms of response to drought in C. canephora Conilon.