951 resultados para Generalized Abel Equation
Resumo:
The intent of this research was to develop a model that describes the extent to which customer behavioral intentions are influenced by service quality, customer satisfaction and customer perceived value in the business-to-business service context. Research on customer behavioral intentions is quite fragmented and no generalized model has been presented. Thus, there was need for empirical testing. This study builds on the services marketing theory and assesses the relationships between the identified constructs. The data for the empirical analysis was collected via a quantitative online survey and a total of 226 usable responses were obtained for further analysis. The model was tested in an employment agency service setting. The measures used in this survey were first assessed by using confirmatory factor analysis (CFA) after which the hypothesized relationships were further verified using structural equation modeling (SEM) in LISREL 8.80. The analysis identified that customer satisfaction played a pivotal role in the model as it was the only direct antecedent of customer behavioral intentions, however, customer perceived value showed a strong indirect impact on buying intentions via customer satisfaction. In contrast to what was hypothesized, service quality and customer perceived value did not have a direct positive effect on behavioral intentions. Also, a contradicting finding with current literature was that sacrifice was argued to have a direct but positive impact on customer perceived value. Based on the findings in this study, managers should carefully think of their service strategies that lead to their customers’ favorable behavioral intentions.
Resumo:
At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.
Resumo:
The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
[N. 1:4250000].
Resumo:
Affective states influence subsequent attention allocation. We evaluated emotional negativity bias modulation by reappraisal in patients with generalized anxiety disorder (GAD) relative to normal controls. Event-related potential (ERP) recordings were obtained, and changes in P200 and P300 amplitudes in response to negative or neutral words were noted after decreasing negative emotion or establishing a neutral condition. We found that in GAD patients only, the mean P200 amplitude after negative word presentation was much higher than after the presentation of neutral words. In normal controls, after downregulation of negative emotion, the mean P300 amplitude in response to negative words was much lower than after neutral words, and this was significant in both the left and right regions. In GAD patients, the negative bias remained prominent and was not affected by reappraisal at the early stage. Reappraisal was observed to have a lateralized effect at the late stage.
Resumo:
This study aimed to analyze the agreement between measurements of unloaded oxygen uptake and peak oxygen uptake based on equations proposed by Wasserman and on real measurements directly obtained with the ergospirometry system. We performed an incremental cardiopulmonary exercise test (CPET), which was applied to two groups of sedentary male subjects: one apparently healthy group (HG, n=12) and the other had stable coronary artery disease (n=16). The mean age in the HG was 47±4 years and that in the coronary artery disease group (CG) was 57±8 years. Both groups performed CPET on a cycle ergometer with a ramp-type protocol at an intensity that was calculated according to the Wasserman equation. In the HG, there was no significant difference between measurements predicted by the formula and real measurements obtained in CPET in the unloaded condition. However, at peak effort, a significant difference was observed between oxygen uptake (V˙O2)peak(predicted)and V˙O2peak(real)(nonparametric Wilcoxon test). In the CG, there was a significant difference of 116.26 mL/min between the predicted values by the formula and the real values obtained in the unloaded condition. A significant difference in peak effort was found, where V˙O2peak(real)was 40% lower than V˙O2peak(predicted)(nonparametric Wilcoxon test). There was no agreement between the real and predicted measurements as analyzed by Lin’s coefficient or the Bland and Altman model. The Wasserman formula does not appear to be appropriate for prediction of functional capacity of volunteers. Therefore, this formula cannot precisely predict the increase in power in incremental CPET on a cycle ergometer.
Resumo:
Collection : Bibliothèque d'études ouvrières ; 1