989 resultados para GPS Network
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
Aurizon, Australia's largest rail freight operator, is introducing the Static Frequency Converter (SFC) technology into its electric railway network as part of the Bauhinia Electrification Project. The introduction of SFCs has significant implications on the protection systems of the 50kV traction network. The traditional distance protection calculation method does not work in this configuration because of the effect that the SFC in combination with the remote grid has on the apparent impedance, and was substantially reviewed. The standard overcurrent (OC) protection scheme is not suitable due to the minimum fault level being below the maximum load level and was revised to incorporate directionality and under-voltage inhibit. Delta protection was reviewed to improve sensitivity. A new protection function was introduced to prevent back-feeding faults in the transmission network through the grid connection. Protection inter-tripping was included to ensure selectivity between the SFC protection and the system downstream.
Resumo:
Distributed renewable energy has become a significant contender in the supply of power in the distribution network in Queensland and throughout the world. As the cost of battery storage falls, distribution utilities turn their attention to the impacts of battery storage and other storage technologies on the low voltage (LV) network. With access to detailed residential energy usage data, Energex's available residential tariffs are investigated for their effectiveness in providing customers with financial incentives to move to Time-of Use based tariffs and to reward use of battery storage.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Resumo:
Telecommunications network management is based on huge amounts of data that are continuously collected from elements and devices from all around the network. The data is monitored and analysed to provide information for decision making in all operation functions. Knowledge discovery and data mining methods can support fast-pace decision making in network operations. In this thesis, I analyse decision making on different levels of network operations. I identify the requirements decision-making sets for knowledge discovery and data mining tools and methods, and I study resources that are available to them. I then propose two methods for augmenting and applying frequent sets to support everyday decision making. The proposed methods are Comprehensive Log Compression for log data summarisation and Queryable Log Compression for semantic compression of log data. Finally I suggest a model for a continuous knowledge discovery process and outline how it can be implemented and integrated to the existing network operations infrastructure.
Resumo:
This doctoral dissertation introduces an algorithm for constructing the most probable Bayesian network from data for small domains. The algorithm is used to show that a popular goodness criterion for the Bayesian networks has a severe sensitivity problem. The dissertation then proposes an information theoretic criterion that avoids the problem.
Location of concentrators in a computer communication network: a stochastic automation search method
Resumo:
The following problem is considered. Given the locations of the Central Processing Unit (ar;the terminals which have to communicate with it, to determine the number and locations of the concentrators and to assign the terminals to the concentrators in such a way that the total cost is minimized. There is alao a fixed cost associated with each concentrator. There is ail upper limit to the number of terminals which can be connected to a concentrator. The terminals can be connected directly to the CPU also In this paper it is assumed that the concentrators can bo located anywhere in the area A containing the CPU and the terminals. Then this becomes a multimodal optimization problem. In the proposed algorithm a stochastic automaton is used as a search device to locate the minimum of the multimodal cost function . The proposed algorithm involves the following. The area A containing the CPU and the terminals is divided into an arbitrary number of regions (say K). An approximate value for the number of concentrators is assumed (say m). The optimum number is determined by iteration later The m concentrators can be assigned to the K regions in (mk) ways (m > K) or (km) ways (K>m).(All possible assignments are feasible, i.e. a region can contain 0,1,…, to concentrators). Each possible assignment is assumed to represent a state of the stochastic variable structure automaton. To start with, all the states are assigned equal probabilities. At each stage of the search the automaton visits a state according to the current probability distribution. At each visit the automaton selects a 'point' inside that state with uniform probability. The cost associated with that point is calculated and the average cost of that state is updated. Then the probabilities of all the states are updated. The probabilities are taken to bo inversely proportional to the average cost of the states After a certain number of searches the search probabilities become stationary and the automaton visits a particular state again and again. Then the automaton is said to have converged to that state Then by conducting a local gradient search within that state the exact locations of the concentrators are determined This algorithm was applied to a set of test problems and the results were compared with those given by Cooper's (1964, 1967) EAC algorithm and on the average it was found that the proposed algorithm performs better.
Resumo:
Network data packet capture and replay capabilities are basic requirements for forensic analysis of faults and security-related anomalies, as well as for testing and development. Cyber-physical networks, in which data packets are used to monitor and control physical devices, must operate within strict timing constraints, in order to match the hardware devices' characteristics. Standard network monitoring tools are unsuitable for such systems because they cannot guarantee to capture all data packets, may introduce their own traffic into the network, and cannot reliably reproduce the original timing of data packets. Here we present a high-speed network forensics tool specifically designed for capturing and replaying data traffic in Supervisory Control and Data Acquisition systems. Unlike general-purpose "packet capture" tools it does not affect the observed network's data traffic and guarantees that the original packet ordering is preserved. Most importantly, it allows replay of network traffic precisely matching its original timing. The tool was implemented by developing novel user interface and back-end software for a special-purpose network interface card. Experimental results show a clear improvement in data capture and replay capabilities over standard network monitoring methods and general-purpose forensics solutions.
Resumo:
The Distributed Network Protocol v3.0 (DNP3) is one of the most widely used protocols to control national infrastructure. The move from point-to-point serial connections to Ethernet-based network architectures, allowing for large and complex critical infrastructure networks. However, networks and con- figurations change, thus auditing tools are needed to aid in critical infrastructure network discovery. In this paper we present a series of intrusive techniques used for reconnaissance on DNP3 critical infrastructure. Our algorithms will discover DNP3 outstation slaves along with their DNP3 addresses, their corresponding master, and class object configurations. To validate our presented DNP3 reconnaissance algorithms and demonstrate it’s practicality, we present an implementation of a software tool using a DNP3 plug-in for Scapy. Our implementation validates the utility of our DNP3 reconnaissance technique. Our presented techniques will be useful for penetration testing, vulnerability assessments and DNP3 network discovery.
Resumo:
Amateurs are found in arts, sports, or entertainment, where they are linked with professional counterparts and inspired by celebrities. Despite the growing number of CSCW studies in amateur and professional domains, little is known about how technologies facilitate collaboration between these groups. Drawing from a 1.5-year field study in the domain of bodybuilding, this paper describes the collaboration between and within amateurs, professionals, and celebrities on social network sites. Social network sites help individuals to improve their performance in competitions, extend their support network, and gain recognition for their achievements. The findings show that amateurs benefit the most from online collaboration, whereas collaboration shifts from social network sites to offline settings as individuals develop further in their professional careers. This shift from online to offline settings constitutes a novel finding, which extends previous work on social network sites that has looked at groups of amateurs and professionals in isolation. As a contribution to practice, we highlight design factors that address this shift to offline settings and foster collaboration between and within groups.
Resumo:
Research on social network sites has examined how people integrate offline and online life, but with a particular emphasis on their use by friendship groups. We extend earlier work by examining a case in which offline ties are non-existent, but online ties strong. Our case is a study of bodybuilders, who explore their passion with like-minded offline 'strangers' in tightly integrated online communities. We show that the integration of offline and online life supports passion-centric activities, such as bodybuilding.
Resumo:
Social network sites (SNSs) such as Facebook have the potential to persuade people to adopt a lifestyle based on exercise and healthy nutrition. We report the findings of a qualitative study of an SNS for bodybuilders, looking at how bodybuilders present themselves online and how they orchestrate the SNS with their offline activities. Discussing the persuasive element of appreciation, we aim to extend previous work on persuasion in web 2.0 technologies.
Resumo:
The higher education sector is under ongoing pressure to demonstrate quality and efficacy of educational provision, including graduate outcomes. Preparing students as far as possible for the world of professional work has become one of the central tasks of contemporary universities. This challenging task continues to receive significant attention by policy makers and scholars, in the broader contexts of widespread labour market uncertainty and massification of the higher education system (Tomlinson, 2012). In contrast to the previous era of the university, in which ongoing professional employment was virtually guaranteed to university-qualified individuals, contemporary graduates must now be proactive and flexible. They must adapt to a job market that may not accept them immediately, and has continually shifting requirements (Clarke, 2008). The saying goes that rather than seeking security in employment, graduates must now “seek security in employability”. However, as I will argue in this chapter, the current curricular and pedagogic approaches universities adopt, and indeed the core structural characteristics of university-based education, militate against the development of the capabilities that graduates require now and into the future.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.