883 resultados para GLASS-INFILTRATED ALUMINA COMPOSITE
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
In this work, biocompatible and biodegradable poly(D-L-lactide-co-glycolide) (PLGA) microparticles with the potential for use as a controlled release system of vaccines and other drugs to the lung were manufactured using supercritical CO2, through the Supercritical Assisted Atomization (SAA) technique. After performing a controlled variance in production parameters (temperature, pressure, CO2/solution flow ratio) PLGA microparticles were characterized and later used to encapsulate active pharmaceutical ingredients (API). Bovine serum albumin (BSA) was chosen as model protein and vaccine, while sildenafil was the chosen drug to treat pulmonary artery hypertension and their effect on the particles characteristics was evaluated. All the produced formulations were characterized in relation to their morphology (Morphologi G3 and scanning electronic microscopy (SEM)), to their physical-chemical properties (X-ray diffraction (XRD, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR)) and aerodynamic performance using an in vitro aerosolization study – Andersen cascade impactor (ACI) - to obtain data such as the fine particle fraction (FPF) and the mass median aerodynamic diameter (MMAD). Furthermore, pharmacokinetic, biodegradability and biocompatibility tests were performed in order to verify the particle suitability for inhalation. The resulting particles showed aerodynamic diameters between the 3 and 5 μm, yields up to 58% and FPF percentages rounding the 30%. Taken as a whole, the produced microparticles do present the necessary requests to make them appropriate for pulmonary delivery.
Resumo:
O presente trabalho consistiu no estudo do uso do etilenoglicol como fonte de carbono visando o recobrimento de uma alumina comercial, produzindo uma alumina recoberta por carbono (ARC). Os materiais preparados foram utilizados como suporte de molibdénio e usados na reação modelo de HDS do tiofeno. De modo a avaliar a influência da fonte de carbono na atividade e seletividade dos catalisadores preparados, foi estudada a variação da temperatura de carbonização e a variação do número de monocamadas teóricas de carbono impregnadas na superfície da γ-alumina. Os diferentes suportes e catalisadores sintetizados foram caraterizados por análise da cor, difração de raios X (DRX), fisissorção de N2, espetroscopia Raman, espetroscopia de refletância difusa na região do IV com transformada de Fourier (DRIFTS), Dessorção a temperatura programada (TPHe) e avaliação catalítica. Os resultados mostraram que com uma monocamada teórica, e para temperaturas inferiores a 700 ºC, a carbonização da fonte de carbono foi incompleta e que apenas para a temperatura de 700 ºC se originou carbono amorfo. Porém, verificou-se ainda que uma monocamada teórica de carbono não foi suficiente para recobrir a superfície da alumina, o que originou a necessidade de estudar a variação do número de monocamadas teóricas. A variação do número de monocamadas teóricas de carbono permitiu concluir que com um número inferior a 3 monocamadas teóricas não se verificou qualquer alteração nas propriedades da alumina. A impregnação de 3, 4, ou 5 monocamadas teóricas foi suficiente apenas para diminuir a área específica, porém não foi possível recobrir totalmente a superfície do suporte. Estes resultados indicam que o motivo pelo qual não foi possível recobrir a superfície do suporte se deve provavelmente à natureza da fonte de carbono utilizado, o etilenoglicol.
Resumo:
A constante melhoria da eficiência energética dos processos industriais actuais é crucial para o contínuo desenvolvimento sustentável da espécie humana. O estudo das reacções de desidrogenação e hidrogenólise do ciclohexano, sobre catalisadores suportados, pode contribuir para um melhor entendimento acerca dos processos de formação e armazenamento de H2, uma das mais promissoras fontes de energia do futuro próximo, assim como para processos actuais tão importantes como a refinação ou o reforming catalítico do petróleo. Escolheu-se estudar as referidas reacções sobre catalisadores de Ni/α-Al2O3, preparados por três métodos distintos e submetidos a diferentes pré-tratamentos, de modo a realçar a dependência das reacções no que se refere às propriedades catalíticas. A maioria dos estudos anteriores sobre estas mesmas reacções recai sobre catalisadores com metais nobres, como a platina ou o paládio, bastante mais dispendiosos que o níquel para aplicações em larga escala. Os precursores e catalisadores previamente preparados foram submetidos à caracterização por diferentes técnicas: Termogravimetria (sob fluxo oxidativo e não oxidativo), Difracção de Raios-X e Quimissorção de H2. O estudo das reacções de desidrogenação e hidrogenólise do ciclohexano realizou-se recorrendo à análise por Cromatografia Gasosa, utilizando dois cromatógrafos distintos (HEWLETT PACKARD 5890 SERIES II, para GC, e 490 Micro GC Agilent, para Micro GC). Pôde concluir-se que o método de preparação dos catalisadores influenciou a actividade para ambas as reacções, assim como os diferentes pré-tratamentos aplicados. No geral, e na gama de temperaturas estudadas (entre 250 e 310º C), os catalisadores preparados pelo método com etilenodiamina evidenciaram maior actividade para a reacção de desidrogenação, sendo que os catalisadores preparados pelo método com etilenoglicol foram os mais activos para a reacção de hidrogenólise.
Resumo:
Materials engineering focuses on the assembly of materials´ properties to design new products with the best performance. By using sub-micrometer size materials in the production of composites, it is possible to obtain objects with properties that none of their compounds show individually. Once three-dimensional materials can be easily customized to obtain desired properties, much interest has been paid to nanostructured poly-mers in order to build biocompatible devices. Over the past years, the thermosensitive microgels have become more common in the framework of bio-materials with potential applicability in therapy and/or diagnostics. In addition, high aspect ratio biopolymers fibers have been produced using the cost-effective method called electrospinning. Taking advantage of both microgels and electrospun fibers, surfaces with enhanced functionalities can be obtained and, therefore employed in a wide range of applications. This dissertation reports on the confinement of stimuli-responsive microgels through the colloidal electro-spinning process. The process mainly depends on the composition, properties and patterning of the precur-sor materials within the polymer jet. Microgels as well as the electrospun non-woven mats were investigated to correlate the starting materials with the final morphology of the composite fibers. PNIPAAm and PNIPAAm/Chitosan thermosensitive microgels with different compositions were obtained via surfactant free emulsion polymerization (SFEP) and characterized in terms of chemical structure, morphology, thermal sta-bility, swelling properties and thermosensitivity. Finally, the colloidal electrospinning method was carried out from spinning solutions composed of the stable microgel dispersions (up to a concentration of about 35 wt. % microgels) and a polymer solution of PEO/water/ethanol mixture acting as fiber template solution. The confinement of microgels was confirmed by Scanning Electron Microscopy (SEM). The electrospinning process was statistically analysed providing the optimum set of parameters aimed to minimize the fiber diameter, which give rise to electrospun nanofibers of PNIPAAm microgels/PEO with a mean fiber diameter of 63 ± 25 nm.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Resumo:
The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).
Resumo:
The effectiveness of prefabricated hybrid composite plates (HCPs) as a seismic retrofitting solution for damaged interior RC beam-column joints is experimentally studied. HCP is composed of a thin plate made of strain hardening cementitious composite (SHCC) reinforced with CFRP sheets/laminates. Two full-scale severely damaged interior beam-column joints are retrofitted using two different configurations of HCPs. The effectiveness of these retrofitting solutions mainly in terms of hysteretic response, dissipated energy, degradation of secant stiffness, displacement ductility and failure modes are compared to their virgin states. According to these criteria, both solutions resulted in superior responses regarding the ones registered in their virgin states.
Resumo:
Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.
Resumo:
The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe inplane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textilereinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.
Resumo:
In this work, a new steel heated pultrusion die was designed, developed and manufactured to produce U200 glass fibre reinforced thermosetting matrix (GRP) profiles. The finite element analysis (FEA) was used to predict and optimise the developed die heating by using cylindrical electrical powered cartridges. To assess the new die performance it was mounted in the 120 kN pultrusion line of the Portuguese company Vidropol SA and used to produce continuously U200 profiles able to meet all requirements specified for the E23 grade accordingly to the European Standard EN 13706: 2002. After setting up the type, orientation and sequence of layers in the U 200 laminate, different types of thermosetting resins were used in its production. Orthophthalic, isophthalic and bisphenolic unsaturated polyester as well as vinylester resins were used to produce glass fibre reinforced U 200 composite profiles. All applied resins were submitted to SPI gel tests in order to select the more appropriated catalyst system and optimise the processing variables to be used in each case, namely, pultrusion pull-speed and die temperature. The best pultrusion operational conditions were selected by varying and monitoring the pull-speed and die temperature and, at the same time, measuring the temperature on the manufactured U 200 profile during processing. Finally, the produced U200 profiles were submitted to visual inspection, calcination and mechanical tests, namely, flexural, tensional and interlaminar shear strength (ILSS) tests, to assess their accomplishment with the EN 13706 requirements.
Resumo:
Pultrusion is a versatile continuous high speed production technology allowing the production of fibre reinforced complex profiles. Thermosetting resins are normally used as matrices in the production of structural constant cross section profiles. Although only recently thermoplastic matrices have been used in long and continuous fibre reinforced composites replacing with success thermosetting matrices, the number of their applications is increasing due to their better ecological and mechanical performance. Composites with thermoplastic matrices offers increased fracture toughness, higher impact tolerance, short processing cycle time and excellent environmental stability. They are recyclable, post-formable and can be joined by welding. The use of long/continuous fibre reinforced thermoplastic matrix composites involves, however, great technological and scientific challenges since thermoplastics present much higher viscosity than thermosettings, which makes much difficult and complex the impregnation of reinforcements and consolidation tasks. In this work continuous fibres reinforced thermoplastic matrix towpregs were produced using equipment developed by the Institute for Polymers and Composites (IPC). The processing of the towpregs was made by pultrusion, in a developed prototype equipment existing in the Engineering School of the Polytechnic Institute of Porto (ISEP). Different thermoplastic matrices and fibres raw-materials were used in this study to manufacture pultruded composites for commercial applications (glass and carbon fibre/ polypropylene) and for advanced markets (carbon fibre/Primospire®). To improve the temperature distribution profile in heating die, different modifications were performed. In order to optimize both processes, towpregs production and pultruded composites profiles were analysed to determine the influence of the most relevant processing arameters in the final properties. The final pultruded composite profiles were submitted to mechanical tests to obtain the relevant properties.