932 resultados para GIS BASED PLANNING TOOLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação do Prof. Paulo Alexandre Pires

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho de Projeto

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.A presente dissertação foi preparada no âmbito do convénio bilateral existente entre a Universidade Nova de Lisboa e a Universidade de Vigo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Text based on the paper presented at the Conference "Autonomous systems: inter-relations of technical and societal issues" held at Monte de Caparica (Portugal), Universidade Nova de Lisboa, November, 5th and 6th 2009 and organized by IET-Research Centre on Enterprise and Work Innovation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented at Faculty of Sciences and Technology of the New University of Lisbon to attain the Master degree in Electrical and Computer Science Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer Science