872 resultados para Fusion de segmentations
Resumo:
The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.
An Early-Warning System for Hypo-/Hyperglycemic Events Based on Fusion of Adaptive Prediction Models
Resumo:
Introduction: Early warning of future hypoglycemic and hyperglycemic events can improve the safety of type 1 diabetes mellitus (T1DM) patients. The aim of this study is to design and evaluate a hypoglycemia / hyperglycemia early warning system (EWS) for T1DM patients under sensor-augmented pump (SAP) therapy. Methods: The EWS is based on the combination of data-driven online adaptive prediction models and a warning algorithm. Three modeling approaches have been investigated: (i) autoregressive (ARX) models, (ii) auto-regressive with an output correction module (cARX) models, and (iii) recurrent neural network (RNN) models. The warning algorithm performs postprocessing of the models′ outputs and issues alerts if upcoming hypoglycemic/hyperglycemic events are detected. Fusion of the cARX and RNN models, due to their complementary prediction performances, resulted in the hybrid autoregressive with an output correction module/recurrent neural network (cARN)-based EWS. Results: The EWS was evaluated on 23 T1DM patients under SAP therapy. The ARX-based system achieved hypoglycemic (hyperglycemic) event prediction with median values of accuracy of 100.0% (100.0%), detection time of 10.0 (8.0) min, and daily false alarms of 0.7 (0.5). The respective values for the cARX-based system were 100.0% (100.0%), 17.5 (14.8) min, and 1.5 (1.3) and, for the RNN-based system, were 100.0% (92.0%), 8.4 (7.0) min, and 0.1 (0.2). The hybrid cARN-based EWS presented outperforming results with 100.0% (100.0%) prediction accuracy, detection 16.7 (14.7) min in advance, and 0.8 (0.8) daily false alarms. Conclusion: Combined use of cARX and RNN models for the development of an EWS outperformed the single use of each model, achieving accurate and prompt event prediction with few false alarms, thus providing increased safety and comfort.
Resumo:
BACKGROUND: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects. OBJECTIVE: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion. METHODS: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured. RESULTS: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus. CONCLUSION: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise e.g., Fundus photography, Optical Coherence Tomography (OCT), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The presented article’s goal is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI which was not visible before like vessels and the macula. This article’s contributions include automatic detection of the optic disc, the fovea, the optic axis and an automatic segmentation of the vitreous humor of the eye.
Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting
Resumo:
Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.
Resumo:
Due to its proximal correction site and long lever arm, the Lapidus fusion, modified or not, is a powerful technique to correct hallux valgus deformities. The disadvantages are a high complication rate and a long postoperative rehabilitation period. It is only performed in 5% to 10% of all hallux valgus deformity corrections but remains, however, an important procedure, especially in moderate to severe deformities with intermetatarsal angles more than 14°, hypermobility of the first ray, arthritis of the first tarsometatarsal joint, and recurrent deformities. This article provides an overview of the procedure with special focus on the surgical technique.
Resumo:
BACKGROUND TMPRSS2-ERG gene fusion is the most frequent genetic alteration in prostate cancer. However, information about its distribution in lymph node positive prostate cancers and the prognostic significance in these advanced tumors is unknown. METHODS Gene fusion status was determined by fluorescence in situ hybridization on a tissue-microarray constructed from 119 hormone-naïve nodal positive, surgically treated prostate cancers containing samples from the primary tumors and corresponding lymph node metastases. Data were correlated with various tumor features (Gleason score, stage, cancer volume, nodal tumor burden) and biochemical recurrence-free, disease-specific, and overall survival. RESULTS TMPRSS2-ERG fusion was detected in 43.5% of the primary tumors. Conversely, only 29.9% of the metastasizing components showed the fusion. Concordance in TMPRSS2-ERG status between primary tumors and metastases was 70.9% (Kappa 0.39); 20.9% and 8.1% of the patients showed the mutation solely in their primary tumors and metastases, respectively. TMPRSS2-ERG fusion was not correlated with specific histopathological tumor features but predicted favorable biochemical recurrence-free, disease-specific and overall survival independently when present in the primary tumor (P < 0.05 each). CONCLUSION TMPRSS2-ERG fusion is more frequent in primary prostate cancer than in corresponding metastases suggesting no selection of fusion-positive cells in the metastatic process. The gene fusion in primary tumors independently predicts favorable outcome.
Resumo:
Introduction: Current demographic changes are characterized by population aging, such that the surgical treatment of degenerative spine conditions in the elderly is gaining increasing relevance. However, there is a general reluctance to consider spinal fusion procedures in this patient age group due to the increased likelihood of complications. The aim of this study was to assess the patient-rated outcome and complication rates associated with lumbar fusion procedures in three different age groups. Methods: This was a retrospective analysis of prospectively collected data from consecutive patients who underwent first-time, one to three level posterior instrumented fusion between 2004 and 2011, due to degenerative disease of the lumbar spine. Data were obtained from our Spine Surgery Outcomes Database (linked to the International Spine Tango Register). Before surgery, patients completed the multidimensional Core Outcome Measures Index (COMI), and at 3 and 12 months after surgery they completed the COMI and rated the Global Treatment Outcome (GTO) and their satisfaction with care. Patients were divided into three groups according to their age: younger (≥50y <65y; n = 317), older (≥65y <80y; n = 350), and geriatric (≥ 80y; n = 40). Results: 707 consecutive patients were included. The preoperative comorbidity status differed significantly (p < 0.0001) between the age groups, with the highest scores in the geriatric group. General medical complications during surgery were lower in the younger age group (7%) than in the older (13.4%; p = 0.006) and geriatric groups (17.5%; p = 0.007). Duration of hospital stay was longer (p = 0.006) in the older group (10.8 ± 3.7 days) than the younger (10.0 ± 3.6 days) group. There were no significant group differences (p>0.05) for any of the COMI domains covering pain, function, symptom specific well-being, general quality of life, and social and work disability at either 3 months’ or 12 months’ follow-up. Similarly, there were no differences (p>0.05) between the age groups for GTO and patient-rated satisfaction at either follow-up. Conclusions: Preoperative comorbidity and general medical complications during lumbar fusion for degenerative disorders of the lumbar spine are both greater in geriatric patients than in younger patients. However, patient-rated outcome is as good in the elderly as it is in younger age groups. These data suggest that geriatric age per se is not a contraindication to instrumented fusion for lumbar degenerative disease.
Resumo:
Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE protein-based method for incorporation of multiple membrane proteins into artificial membrane vesicles of well-defined composition, and for delivery of large water-soluble substrates into these vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0 ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.