948 resultados para Functional Model
Resumo:
A wirelessly controlled magnetic microrobot has been proposed to diagnose and treat pathologies in the posterior segment of the human eye. The robot consists of a magnetic CoNi platform with a conformal coating of functional polymers. Electrodeposition has been the preferred method to fabricate and to functionalize the microrobot. Poly(pyrrole), a widely studied intrinsically conductive polymer has been investigated as a biocompatible coating to reduce biofouling, and as a coating that can release incorporated drugs on demand. The mechanism of redox cycling has been investigated to reduce the stiction of NIH 3T3 fibroblasts onto poly(pyrrole) surfaces. To demonstrate triggered drug release, Rhodamine B has been incorporated into the Ppy matrix as a model drug. Rapid Rhodamine B release is obtained when eddy current losses are induced by alternating magnetic fields on the CoNi substrates underneath these films.
Resumo:
Retinal degenerative diseases, e.g. retinitis pigmentosa, with resulting photoreceptor damage account for the majority of vision loss in the industrial world. Animal models are of pivotal importance to study such diseases. In this regard the photoreceptor-specific toxin N-methyl-N-nitrosourea (MNU) has been widely used in rodents to pharmacologically induce retinal degeneration. Previously, we have established a MNU-induced retinal degeneration model in the zebrafish, another popular model system in visual research. A fascinating difference to mammals is the persistent neurogenesis in the adult zebrafish retina and its regeneration after damage. To quantify this observation we have employed visual acuity measurements in the adult zebrafish. Thereby, the optokinetic reflex was used to follow functional changes in non-anesthetized fish. This was supplemented with histology as well as immunohistochemical staining for apoptosis (TUNEL) and proliferation (PCNA) to correlate the developing morphological changes. In summary, apoptosis of photoreceptors occurs three days after MNU treatment, which is followed by a marked reduction of cells in the outer nuclear layer (ONL). Thereafter, proliferation of cells in the inner nuclear layer (INL) and ONL is observed. Herein, we reveal that not only a complete histological but also a functional regeneration occurs over a time course of 30 days. Now we illustrate the methods to quantify and follow up zebrafish retinal de- and regeneration using MNU in a video-format.
Resumo:
Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.
Resumo:
Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of the mitochondrial model organism T. brucei and characterized its proteome. Our results show that the trypanosomal MOM proteome consists of 82 proteins. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. In mammalian cells, a putative tethering complex was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved.
Resumo:
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
Resumo:
Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders1, 2. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin3, 4 and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure5 and neurocognitive impairment6. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.
Resumo:
Abstract PURPOSE: Reliable animal models are essential to evaluate future therapeutic options like cell-based therapies for external anal sphincter insufficiency. The goal of our study was to describe the most reliable model for external sphincter muscle insufficiency by comparing three different methods to create sphincter muscle damage. METHODS: In an experimental animal study, female Lewis rats (200-250 g) were randomly assigned to three treatment groups (n = 5, each group). The external sphincter muscle was weakened in the left dorsal quadrant by microsurgical excision, cryosurgery, or electrocoagulation by diathermy. Functional evaluation included in vivo measurements of resting pressure, spontaneous muscle contraction, and contraction in response to electrical stimulation of the afferent nerve at baseline and at 2, 4, and 6 weeks after sphincter injury. Masson's trichrome staining and immunofluorescence for skeletal muscle markers was performed for morphological analysis. RESULTS: Peak contraction after electrical stimulation was significantly decreased after sphincter injury in all groups. Contraction forces recovered partially after cryosurgery and electrocoagulation but not after microsurgical excision. Morphological analysis revealed an incomplete destruction of the external sphincter muscle in the cryosurgery and electrocoagulation groups compared to the microsurgery group. CONCLUSIONS: For the first time, three different models of external sphincter muscle insufficiency were directly compared. The animal model using microsurgical sphincter destruction offers the highest level of consistency regarding tissue damage and sphincter insufficiency, and therefore represents the most reliable model to evaluate future therapeutic options. In addition, this study represents a novel model to specifically test the external sphincter muscle function.
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
BACKGROUND: Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE: We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS: We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS: We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION: These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.
Resumo:
Lumbar spinal instability (LSI) is a common spinal disorder and can be associated with substantial disability. The concept of defining clinically relevant classifications of disease or 'target condition' is used in diagnostic research. Applying this concept to LSI we hypothesize that a set of clinical and radiological criteria can be developed to identify patients with this target condition who are at high risk of 'irreversible' decompensated LSI for whom surgery becomes the treatment of choice. In LSI, structural deterioration of the lumbar disc initiates a degenerative cascade of segmental instability. Over time, radiographic signs become visible: traction spurs, facet joint degeneration, misalignment, stenosis, olisthesis and de novo scoliosis. Ligaments, joint capsules, local and distant musculature are the functional elements of the lumbar motion segment. Influenced by non-functional factors, these functional elements allow a compensation of degeneration of the motion segment. Compensation may happen on each step of the degenerative cascade but cannot reverse it. However, compensation of LSI may lead to an alleviation or resolution of clinical symptoms. In return, the target condition of decompensation of LSI may cause the new occurrence of symptoms and pain. Functional compensation and decompensation are subject to numerous factors that can change which makes estimation of an individual's long-term prognosis difficult. Compensation and decompensation may influence radiographic signs of degeneration, e.g. the degree of misalignment and segmental angulation caused by LSI is influenced by the tonus of the local musculature. This conceptual model of compensation/decompensation may help solve the debate on functional and psychosocial factors that influence low back pain and to establish a new definition of non-specific low back pain. Individual differences of identical structural disorders could be explained by compensated or decompensated LSI leading to changes in clinical symptoms and pain. Future spine surgery will have to carefully define and measure functional aspects of LSI, e.g. to identify a point of no return where multidisciplinary interventions do not allow a re-compensation and surgery becomes the treatment of choice.
Resumo:
We explored the host-pathogen interactions of the human opportunistic fungus Candida albicans using Drosophila melanogaster. We established that a Drosophila strain devoid of functional Toll receptor is highly susceptible to the human pathogen C. albicans. Using this sensitive strain, we have been able to show that a set of specific C. albicans mutants of different virulence in mammalian infection models are also impaired in virulence in Drosophila and remarkably display the same rank order of virulence. This immunodeficient insect model also revealed virulence properties undetected in an immunocompetent murine model of infection. The genetic systems available in both host and pathogen will enable the identification of host-specific components and C. albicans genes involved in the host-fungal interplay.
Resumo:
Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.
Resumo:
We use density functional theory to explore the interplay between octahedral rotations and ferroelectricity in the model compound SrTiO3. We find that over the experimentally relevant range octahedral rotations suppress ferroelectricity as is generally assumed in the literature. Somewhat surprisingly, we observe that at larger angles the previously weakened ferroelectric instability strengthens significantly. By analyzing geometry changes, energetics, force constants and charges, we explain the mechanisms behind this transition from competition to cooperation with increasing octahedral rotation angle.
Lamb Temporal Bone as a Surgical Training Model of Round Window Cochlear Implant Electrode Insertion
Resumo:
OBJECTIVE The preservation of residual hearing in cochlear implantation opens the door for optimal functional results. This atraumatic surgical technique requires training; however, the traditional human cadaveric temporal bones have become less available or unattainable in some institutions. This study investigates the suitability of an alternative model, using cadaveric lamb temporal bone, for surgical training of atraumatic round window electrode insertion. INTERVENTION A total of 14 lamb temporal bones were dissected for cochlear implantation by four surgeons. After mastoidectomy, visualization, and drilling of the round window niche, an atraumatic round window insertion of a Medel Flex24 electrode was performed. Electrode insertion depth and position were verified by computed tomography scans. MAIN OUTCOME MEASURE All cochleas were successfully implanted using the atraumatic round window approach; however, surgical access through the mastoid was substantially different when compared human anatomy. The mean number of intracochlear electrode contacts was 6.5 (range, 4-11) and the mean insertion depth 10.4 mm (range, 4-20 mm), which corresponds to a mean angular perimodiolar insertion depth of 229 degrees (range 67-540°). Full insertion of the electrode was not possible because of the smaller size of the lamb cochlea in comparison to that of the human. CONCLUSION The lamb temporal bone model is well suited as a training model for atraumatic cochlear implantation at the level of the round window. The minimally pneumatized mastoid as well as the smaller cochlea can help prepare a surgeon for difficult cochlear implantations. Because of substantial differences to human anatomy, it is not an adequate training model for other surgical techniques such as mastoidectomy and posterior tympanotomy as well as full electrode insertion.
Resumo:
Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.