966 resultados para Functional Capacity Classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Health risks associated with subclinical hypothyroidism in older adults are unclear. Our objective was to compare the functional mobility of people aged 70 to 79 years by thyroid function categorized by thyrotropin (TSH) level as euthyroid (>or=0.4 to <4.5 mIU/L), mild subclinical hypothyroid (>or=4.5 to <7.0 mIU/L), or moderate subclinical hypothyroid (>or=7.0 to <or=20.0 mIU/L with a normal free thyroxine level) cross-sectionally and over 2 years. METHODS: A total of 2290 community-dwelling residents participating in the year 2 clinic visit (July 1998-June 1999) of the Health, Aging, and Body Composition (Health ABC) Study, who had measured TSH level, had the capacity to walk 20 m unaided, and were not taking thyroid medication or had TSH levels consistent with hyperthyroidism or hypothyroidism. Main outcome measures included self-reported and performance-based measures of mobility (usual and rapid gait speed and endurance walking ability) assessed at study baseline (year 2) and 2 years later. RESULTS: In age- and sex-adjusted analyses, the mild subclinical hypothyroid group (vs the euthyroid group) demonstrated better mobility (faster mean usual and rapid gait speed [1.20 vs 1.15 m/s and 1.65 vs 1.56 m/s, respectively; P < .001] and had a higher percentage of those with good cardiorespiratory fitness and reported walking ease [39.2% vs 28.0% and 44.7% vs 36.5%, respectively; P < .001]). After 2 years, persons with mild subclinical hypothyroidism experienced a similar decline as the euthyroid group but maintained their mobility advantage. Persons with moderate subclinical hypothyroidism had similar mobility and mobility decline as the euthyroid group. CONCLUSION: Generally, well-functioning 70- to 79-year-old individuals with subclinical hypothyroidism do not demonstrate increased risk of mobility problems, and those with mild elevations in TSH level show a slight functional advantage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that in humans the germinal center reactions produce three types of V(D)J mutated B cells in similar proportions, i.e. Ig-switched, IgD-IgM+ (IgM-only) and IgD+IgM+ cells, and that together they form the CD27+ compartment of recirculating B cells. We investigated the Ig isotype switch capacity of these cells. Peripheral blood B subsets were sorted and IgG subclass secretion in presence or absence of IL-4 was compared in B cell assays which lead to Ig secretion in all (coculture with EL-4 thymoma cells) or only in CD27+ (CD40L stimulation) B cells. Already switched IgG+ B cells showed no significant sequential switch and IgM-only cells also had a low switch capacity, but IgD+CD27+ switched as much as IgD+CD27- B cells to all IgG subclasses. Thus, in switched B cells some alterations compromising further switch options occur frequently; IgM-only cells may result from aborted switch. However, IgD+CD27+ human B cells, extensively V(D)J mutated and "naive" regarding switch, build up a repertoire of B cells combining (1) novel cross-reactive specificities, (2) increased differentiation capacity (including after T-independent stimulation by Staphylococcus aureus Cowan I) and (3) the capacity to produce appropriate isotypes when they respond to novel pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The genome of Protochlamydia amoebophila UWE25, a Parachlamydia-related endosymbiont of free-living amoebae, was recently published, providing the opportunity to search for genomic islands (GIs). RESULTS: On the residual cumulative G+C content curve, a G+C-rich 19-kb region was observed. This sequence is part of a 100-kb chromosome region, containing 100 highly co-oriented ORFs, flanked by two 17-bp direct repeats. Two identical gly-tRNA genes in tandem are present at the proximal end of this genetic element. Several mobility genes encoding transposases and bacteriophage-related proteins are located within this chromosome region. Thus, this region largely fulfills the criteria of GIs. The G+C content analysis shows that several modules compose this GI. Surprisingly, one of them encodes all genes essential for F-like conjugative DNA transfer (traF, traG, traH, traN, traU, traW, and trbC), involved in sex pilus retraction and mating pair stabilization, strongly suggesting that, similarly to the other F-like operons, the parachlamydial tra unit is devoted to DNA transfer. A close relatedness of this tra unit to F-like tra operons involved in conjugative transfer is confirmed by phylogenetic analyses performed on concatenated genes and gene order conservation. These analyses and that of gly-tRNA distribution in 140 GIs suggest a proteobacterial origin of the parachlamydial tra unit. CONCLUSIONS: A GI of the UWE25 chromosome encodes a potentially functional F-like DNA conjugative system. This is the first hint of a putative conjugative system in chlamydiae. Conjugation most probably occurs within free-living amoebae, that may contain hundreds of Parachlamydia bacteria tightly packed in vacuoles. Such a conjugative system might be involved in DNA transfer between internalized bacteria. Since this system is absent from the sequenced genomes of Chlamydiaceae, we hypothesize that it was acquired after the divergence between Parachlamydiaceae and Chlamydiaceae, when the Parachlamydia-related symbiont was an intracellular bacteria. It suggests that this heterologous DNA was acquired from a phylogenetically-distant bacteria sharing an amoebal vacuole. Since Parachlamydiaceae are emerging agents of pneumonia, this GI might be involved in pathogenicity. In future, conjugative systems might be developed as genetic tools for Chlamydiales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa D.O.T. has a classification system designed to rate coarse aggregates as to their skid resistant characteristics. Aggregates have been classified into five functional types, with a Type 1 being the most skid resistant. A complete description of the classification system can be found in the Office of Materials Instructional Memorandum T-203. Due to the variability of ledges within any given quarry the classification of individual ledges becomes necessary. The type of aggregate is then specified for each asphaltic concrete surface course. As various aggregates become used in a.c. paving, there is a continuing process of evaluating the frictional properties of the pavement surface. It is primarily through an effort of this sort that information on aggregate sources and individual ledges becomes more refined. This study is being conducted to provide that needed up-to-date information that can be used to monitor the aggregate classification system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Les canaux ioniques ASICs (acid-sensing ion channels) appartiennent à la famille des canaux ENaC/Degenerin. Pour l'instant, quatre gènes (1 à 4) ont été clonés dont certains présentent des variants d'épissage. Leur activation par une acidification rapide du milieu extracellulaire génère un courant entrant transitoire essentiellement sodique accompagné pour certains types d'ASICs d'une phase soutenue. Les ASICs sont exprimés dans le système nerveux, central (SNC) et périphérique (SNP). On leur attribue un rôle dans l'apprentissage, la mémoire et l'ischémie cérébrale au niveau central ainsi que dans la nociception (douleur aiguë et inflammatoire) et la méchanotransduction au niveau périphérique. Toutefois, les données sont parfois contradictoires. Certaines études suggèrent qu'ils sont des senseurs primordiaux impliqués dans la détection de l'acidification et la douleur. D'autres études suggèrent plutôt qu'ils ont un rôle modulateur inhibiteur dans la douleur. De plus, le fait que leur activation génère majoritairement un courant transitoire alors que les fibres nerveuses impliquées dans la douleur répondent à un stimulus nocif avec une adaptation lente suggère que leurs propriétés doivent être modulés par des molécules endogènes. Dans une première partie de ma thèse, nous avons abordé la question de l'expression fonctionnelle des ASICs dans les neurones sensoriels primaires afférents du rat adulte pour clarifier le rôle des ASICs dans les neurones sensoriels. Nous avons caractérisé leurs propriétés biophysiques et pharmacologiques par la technique du patch-clamp en configuration « whole-cell ». Nous avons pu démontrer que près de 60% des neurones sensoriels de petit diamètre expriment des courants ASICs. Nous avons mis en évidence trois types de courant ASIC dans ces neurones. Les types 1 et 3 ont des propriétés compatibles avec un rôle de senseur du pH alors que le type 2 est majoritairement activé par des pH inférieurs à pH6. Le type 1 est médié par des homomers de la sous-unité ASIC1 a qui sont perméables aux Ca2+. Nous avons étudié leur co-expression avec des marqueurs des nocicepteurs ainsi que la possibilité d'induire une activité neuronale suite à une acidification qui soit dépendante des ASICs. Le but était d'associer un type de courant ASIC avec une fonction potentielle dans les neurones sensoriels. Une majorité des neurones exprimant les courants ASIC co-expriment des marqueurs des nocicepteurs. Toutefois, une plus grande proportion des neurones exprimant le type 1 n'est pas associée à la nociception par rapport aux types 2 et 3. Nous avons montré qu'il est possible d'induire des potentiels d'actions suite à une acidification. La probabilité d'induction est proportionnelle à la densité des courants ASIC et à l'acidité de la stimulation. Puis, nous avons utilisé cette classification comme un outil pour appréhender les potentielles modulations fonctionnelles des ASICs dans un model de neuropathie (spared nerve injury). Cette approche fut complétée par des expériences de «quantitative RT-PCR ». En situation de neuropathie, les courants ASIC sont dramatiquement changés au niveau de leur expression fonctionnelle et transcriptionnelle dans les neurones lésés ainsi que non-lésés. Dans une deuxième partie de ma thèse, suite au test de différentes substances sécrétées lors de l'inflammation et l'ischémie sur les propriétés des ASICs, nous avons caractérisé en détail la modulation des propriétés des courants ASICs notamment ASIC1 par les sérines protéases dans des systèmes d'expression recombinants ainsi que dans des neurones d'hippocampe. Nous avons montré que l'exposition aux sérine-protéases décale la dépendance au pH de l'activation ainsi que la « steady-state inactivation »des ASICs -1a et -1b vers des valeurs plus acidiques. Ainsi, l'exposition aux serine protéases conduit à une diminution du courant quand l'acidification a lieu à partir d'un pH7.4 et conduit à une augmentation du courant quand l'acidification alleu à partir d'un pH7. Nous avons aussi montré que cette régulation a lieu des les neurones d'hippocampe. Nos résultats dans les neurones sensoriels suggèrent que certains courants ASICs sont impliqués dans la transduction de l'acidification et de la douleur ainsi que dans une des phases du processus conduisant à la neuropathie. Une partie des courants de type 1 perméables au Ca 2+ peuvent être impliqués dans la neurosécrétion. La modulation par les sérines protéases pourrait expliquer qu'en situation d'acidose les canaux ASICs soient toujours activables. Résumé grand publique Les neurones sont les principales cellules du système nerveux. Le système nerveux est formé par le système nerveux central - principalement le cerveau, le cervelet et la moelle épinière - et le système nerveux périphérique -principalement les nerfs et les neurones sensoriels. Grâce à leur nombreux "bras" (les neurites), les neurones sont connectés entre eux, formant un véritable réseau de communication qui s'étend dans tout le corps. L'information se propage sous forme d'un phénomène électrique, l'influx nerveux (ou potentiels d'actions). A la base des phénomènes électriques dans les neurones il y a ce que l'on appelle les canaux ioniques. Un canal ionique est une sorte de tunnel qui traverse l'enveloppe qui entoure les cellules (la membrane) et par lequel passent les ions. La plupart de ces canaux sont normalement fermés et nécessitent d'être activés pour s'ouvrire et générer un influx nerveux. Les canaux ASICs sont activés par l'acidification et sont exprimés dans tout le système nerveux. Cette acidification a lieu notamment lors d'une attaque cérébrale (ischémie cérébrale) ou lors de l'inflammation. Les expériences sur les animaux ont montré que les canaux ASICs avaient entre autre un rôle dans la mort des neurones lors d'une attaque cérébrale et dans la douleur inflammatoire. Lors de ma thèse je me suis intéressé au rôle des ASICs dans la douleur et à l'influence des substances produites pendant l'inflammation sur leur activation par l'acidification. J'ai ainsi pu montrer chez le rat que la majorité des neurones sensoriels impliqués dans la douleur ont des canaux ASICs et que l'activation de ces canaux induit des potentiels d'action. Nous avons opéré des rats pour qu'ils présentent les symptômes d'une maladie chronique appelée neuropathie. La neuropathie se caractérise par une plus grande sensibilité à la douleur. Les rats neuropathiques présentent des changements de leurs canaux ASICs suggérant que ces canaux ont une peut-être un rôle dans la genèse ou les symptômes de cette maladie. J'ai aussi montré in vitro qu'un type d'enryme produit lors de l'inflammation et l'ischémie change les propriétés des ASICs. Ces résultats confirment un rôle des ASICs dans la douleur suggérant notamment un rôle jusque là encore non étudié dans la douleur neuropathique. De plus, ces résultats mettent en évidence une régulation des ASICs qui pourrait être importante si elle se confirmait in vivo de part les différents rôles des ASICs. Abstract Acid-sensing ion channels (ASICs) are members of the ENaC/Degenerin superfamily of ion channels. Their activation by a rapid extracellular acidification generates a transient and for some ASIC types also a sustained current mainly mediated by Na+. ASICs are expressed in the central (CNS) and in the peripheral (PNS) nervous system. In the CNS, ASICs have a putative role in learning, memory and in neuronal death after cerebral ischemia. In the PNS, ASICs have a putative role in nociception (acute and inflammatory pain) and in mechanotransduction. However, studies on ASIC function are somewhat controversial. Some studies suggest a crucial role of ASICs in transduction of acidification and in pain whereas other studies suggest rather a modulatory inhibitory role of ASICs in pain. Moreover, the basic property of ASICs, that they are activated only transiently is irreconcilable with the well-known property of nociception that the firing of nociceptive fibers demonstrated very little adaptation. Endogenous molecules may exist that can modulate ASIC properties. In a first part of my thesis, we addressed the question of the functional expression of ASICs in adult rat dorsal root ganglion (DRG) neurons. Our goal was to elucidate ASIC roles in DRG neurons. We characterized biophysical and pharmacological properties of ASIC currents using the patch-clamp technique in the whole-cell configuration. We observed that around 60% of small-diameter sensory neurons express ASICs currents. We described in these neurons three ASIC current types. Types 1 and 3 have properties compatible with a role of pH-sensor whereas type 2 is mainly activated by pH lower than pH6. Type 1 is mediated by ASIC1a homomultimers which are permeable to Ca 2+. We studied ASIC co-expression with nociceptor markers. The goal was to associate an ASIC current type with a potential function in sensory neurons. Most neurons expressing ASIC currents co-expressed nociceptor markers. However, a higher proportion of the neurons expressing type 1 was not associated with nociception compared to type 2 and -3. We completed this approach with current-clamp measurements of acidification-induced action potentials (APs). We showed that activation of ASICs in small-diameter neurons can induce APs. The probability of AP induction is positively correlated with the ASIC current density and the acidity of stimulation. Then, we used this classification as a tool to characterize the potential functional modulation of ASICs in the spared nerve injury model of neuropathy. This approach was completed by quantitative RT-PCR experiments. ASICs current expression was dramatically changed at the functional and transcriptional level in injured and non-injured small-diameter DRG neurons. In a second part of my thesis, following an initial screening of the effect of various substances secreted during inflammation and ischemia on ASIC current properties, we characterized in detail the modulation of ASICs, in particular of ASIC1 by serine proteases in a recombinant expression system as well as in hippocampal neurons. We showed that protease exposure shifts the pH dependence of ASIC1 activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in the current response if ASIC1 is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provided evidence that this bi-directional regulation of ASIC1a function also occurs in hippocampal neurons. Our results in DRG neurons suggest that some ASIC currents are involved in the transduction of peripheral acidification and pain. Furthermore, ASICs may participate to the processes leading to neuropathy. Some Ca 2+-permeable type 1 currents may be involved in neurosecretion. ASIC modulation by serine proteases may be physiologically relevant, allowing ASIC activation under sustained slightly acidic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [(3)H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [(3)H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the slow oscillations (<0.11Hz) of region-averaged time series, and a pattern recognition technique was used to learn a discriminant function indicating which particular functional connections are most affected by disease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at p<0.005) and specificity of 86% (p<0.01) to distinguish between MS patients and controls. The most discriminative connectivity changes were found in subcortical and temporal regions, and contralateral connections were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, possibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level integrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phototropin 1 (phot1) blue light receptor mediates a number of adaptive responses, including phototropism, that generally serve to optimize photosynthetic capacity. Phot1 is a plasma membrane-associated protein, but upon irradiation, a fraction is internalized into the cytoplasm. Although this phenomenon has been reported for more than a decade, its biological significance remains elusive. Here, we use a genetic approach to revisit the prevalent hypotheses regarding the functional importance of receptor internalization. Transgenic plants expressing lipidated versions of phot1 that are permanently anchored to the plasma membrane were used to analyse the effect of internalization on receptor turnover, phototropism and other phot1-mediated responses. Myristoylation and farnesylation effectively prevented phot1 internalization. Both modified photoreceptors were found to be fully functional in Arabidopsis, rescuing phototropism and all other phot1-mediated responses tested. Light-mediated phot1 turnover occurred as in the native receptor. Furthermore, our work does not provide any evidence of a role of phot1 internalization in the attenuation of receptor signalling during phototropism. Our results demonstrate that phot1 signalling is initiated at the plasma membrane. They furthermore indicate that release of phot1 into the cytosol is not linked to receptor turnover or desensitization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-b-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent)metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. Results: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gramnegative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. Conclusions: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to characterize the chemistry and the antioxidant capacity in 8 species of native fruits from Amazonia. All the fruits were collected at full physiological and commercial maturity from properties located at: Boa Vista / RR, São Luiz do Anauá / RR, Manaus / AM, and Belém / PA. At the end of the experiment, the functional pattern for the camu-camu fruits showed that the total phenolic and ascorbic acid content and antioxidant assays were superior compared to the other samples. Despite the functional losses detected for the freeze-dried samples of the camu-camu fruit, all the other freeze-dried samples kept under -20ºC showed appropriate stability for long-term storage. In addition, it was also observed that fruit peel showed higher antioxidant activity than pulp or samples containing peel and pulp tissues in the same extract. When the ratio between the ORAC and total phenolic assays were observed, the uxi fruit demonstrated the highest antioxidant power compared to the other fruits studied, despite its relatively low levels of phenolic compound content and ORAC values. This means that there is a relevant contribution of these phenolic compounds to the antioxidant activity of uxi fruit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response involving secretion of cytokines and chemokines, resulting in the activation of astrocytes and recruitment of peripheral immune cells. IL-1β plays an important role in this response; yet its production and mode of action in the brain are not fully understood and its precise implication in neurodegenerative diseases needs further characterization. Our results indicate that the capacity to form a functional NLRP3 inflammasome and secretion of IL-1β is limited to the microglial compartment in the mouse brain. We were not able to observe IL-1β secretion from astrocytes, nor do they express all NLRP3 inflammasome components. Microglia were able to produce IL-1β in response to different classical inflammasome activators, such as ATP, Nigericin or Alum. Similarly, microglia secreted IL-18 and IL-1α, two other inflammasome-linked pro-inflammatory factors. Cell stimulation with α-synuclein, a neurodegenerative disease-related peptide, did not result in the release of active IL-1β by microglia, despite a weak pro-inflammatory effect. Amyloid-β peptides were able to activate the NLRP3 inflammasome in microglia and IL-1β secretion occurred in a P2X7 receptor-independent manner. Thus microglia-dependent inflammasome activation can play an important role in the brain and especially in neuroinflammatory conditions.