860 resultados para Frequent mining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, epidemiology study is done by means of literature survey in groups identified to be at higher potential for DDIs as well as in other cases to explore patterns of DDIs and the factors affecting them. The structure of the FDA Adverse Event Reporting System (FAERS) database is studied and analyzed in detail to identify issues and challenges in data mining the drug-drug interactions. The necessary pre-processing algorithms are developed based on the analysis and the Apriori algorithm is modified to suit the process. Finally, the modules are integrated into a tool to identify DDIs. The results are compared using standard drug interaction database for validation. 31% of the associations obtained were identified to be new and the match with existing interactions was 69%. This match clearly indicates the validity of the methodology and its applicability to similar databases. Formulation of the results using the generic names expanded the relevance of the results to a global scale. The global applicability helps the health care professionals worldwide to observe caution during various stages of drug administration thus considerably enhancing pharmacovigilance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, moving flock patterns are mined from spatio- temporal datasets by incorporating a clustering algorithm. A flock is defined as the set of data that move together for a certain continuous amount of time. Finding out moving flock patterns using clustering algorithms is a potential method to find out frequent patterns of movement in large trajectory datasets. In this approach, SPatial clusteRing algoRithm thrOugh sWarm intelligence (SPARROW) is the clustering algorithm used. The advantage of using SPARROW algorithm is that it can effectively discover clusters of widely varying sizes and shapes from large databases. Variations of the proposed method are addressed and also the experimental results show that the problem of scalability and duplicate pattern formation is addressed. This method also reduces the number of patterns produced

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth potential of service sector, especially the aviation sector in the Indian economy is splendid. Therefore, it is crucial for the airline service providers to realize their customers, design offers and deliver the desired value to their customers. This study reveals the effect of airline passenger satisfactions particularly on re-buy intentions derived from the attributes-level performance dimensions of both service aspects and loyalty programme of an airline. The mediation effect of satisfaction and other selected antecedents on the re-buy intention of a passenger is hypothesized in this study. Critical areas affecting buying intentions such as core service quality and loyalty attribute-level performances, effect of frequent flyer programme and service quality satisfaction, passenger trust on airline, brand image and moderating effects of perceived value, frequent programme status and travel frequency of airline passengers are linked in a structural model to assess the strength of each facet in affecting re-buy intentions. Implications to the airlines were made based on the finding that re-buy intentions cannot be attributed solely to the impacts of frequent flyer programme, rather affected through the mediation effect of airline service quality satisfaction, which is very much valid for the higher FFP status category of frequent travelers. The effects of moderation caused by perceived value, FFP status and flying experience were also found to be significant in making re-buy intentions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. The idea is to improve, on the one hand, the results of Web Mining by exploiting the new semantic structures in the Web; and to make use of Web Mining, on overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study two orthogonal extensions of the classical data mining problem of mining association rules, and show how they naturally interact. The first is the extension from a propositional representation to datalog, and the second is the condensed representation of frequent itemsets by means of Formal Concept Analysis (FCA). We combine the notion of frequent datalog queries with iceberg concept lattices (also called closed itemsets) of FCA and introduce two kinds of iceberg query lattices as condensed representations of frequent datalog queries. We demonstrate that iceberg query lattices provide a natural way to visualize relational association rules in a non-redundant way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. These systems provide currently relatively few structure. We discuss in this paper, how association rule mining can be adopted to analyze and structure folksonomies, and how the results can be used for ontology learning and supporting emergent semantics. We demonstrate our approach on a large scale dataset stemming from an online system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: an increasing number of researchers is working on improving the results of Web Mining by exploiting semantic structures in the Web, and they make use of Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The Semantic Web is the second-generation WWW, enriched by machine-processable information which supports the user in his tasks. Given the enormous size even of today’s Web, it is impossible to manually enrich all of these resources. Therefore, automated schemes for learning the relevant information are increasingly being used. Web Mining aims at discovering insights about the meaning of Web resources and their usage. Given the primarily syntactical nature of the data being mined, the discovery of meaning is impossible based on these data only. Therefore, formalizations of the semantics of Web sites and navigation behavior are becoming more and more common. Furthermore, mining the Semantic Web itself is another upcoming application. We argue that the two areas Web Mining and Semantic Web need each other to fulfill their goals, but that the full potential of this convergence is not yet realized. This paper gives an overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Association rules are a popular knowledge discovery technique for warehouse basket analysis. They indicate which items of the warehouse are frequently bought together. The problem of association rule mining has first been stated in 1993. Five years later, several research groups discovered that this problem has a strong connection to Formal Concept Analysis (FCA). In this survey, we will first introduce some basic ideas of this connection along a specific algorithm, TITANIC, and show how FCA helps in reducing the number of resulting rules without loss of information, before giving a general overview over the history and state of the art of applying FCA for association rule mining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This class introduces basics of web mining and information retrieval including, for example, an introduction to the Vector Space Model and Text Mining. Guest Lecturer: Dr. Michael Granitzer Optional: Modeling the Internet and the Web: Probabilistic Methods and Algorithms, Pierre Baldi, Paolo Frasconi, Padhraic Smyth, Wiley, 2003 (Chapter 4, Text Analysis)

Relevância:

20.00% 20.00%

Publicador: