920 resultados para Frequency response
Resumo:
We assess the predictive ability of three VPIN metrics on the basis of two highly volatile market events of China, and examine the association between VPIN and toxic-induced volatility through conditional probability analysis and multiple regression. We examine the dynamic relationship on VPIN and high-frequency liquidity using Vector Auto-Regression models, Granger Causality tests, and impulse response analysis. Our results suggest that Bulk Volume VPIN has the best risk-warning effect among major VPIN metrics. VPIN has a positive association with market volatility induced by toxic information flow. Most importantly, we document a positive feedback effect between VPIN and high-frequency liquidity, where a negative liquidity shock boosts up VPIN, which, in turn, leads to further liquidity drain. Our study provides empirical evidence that reflects an intrinsic game between informed traders and market makers when facing toxic information in the high-frequency trading world.
Resumo:
The nanosecond optical limiting characteristics of sandwich-type neodymium diphthalocyanine in a co-polymer matrix of polymethyl methacrylate (PMMA) and methyl-2-cyanoacrylate have been studied for the first time. The measurements were performed using 9 ns laser pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The optical limiting performance of neodymium diphthalocyanine in co-polymer host was studied at different linear transmission. Laser damage threshold was also measured for the doped and undoped co-polymer samples. The optical limiting response is attributed to reverse saturable absorption which is due to excited-state absorption.
Resumo:
The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.
Resumo:
The present investigation on “Coconut Phenology and Yield Response to Climate Variability and Change” was undertaken at the experimental site, at the Regional Station, Coconut Development Board, KAU Campus, Vellanikkara. Ten palms each of eight-year-old coconut cultivars viz., Tiptur Tall, Kuttiadi (WCT), Kasaragod (WCT) and Komadan (WCT) were randomly selected.The study therefore, reinforces our traditional knowledge that the coconut palm is sensitive to changing weather conditions during the period from primordium initiation to harvest of nuts (about 44 months). Absence of rainfall from December to May due to early withdrawal of northeast monsoon, lack of pre monsoon showers and late onset of southwest monsoon adversely affect the coconut productivity to a considerable extent in the following year under rainfed conditions. The productivity can be increased by irrigating the coconut palm during the dry periods.Increase in temperature, aridity index, number of severe summer droughts and decline in rainfall and moisture index were the major factors for a marginal decline or stagnation in coconut productivity over a period of time, though various developmental schemes were in operation for sustenance of coconut production in the State of Kerala. It can be attributed to global warming and climate change. Therefore, there is a threat to coconut productivity in the ensuing decades due to climate variability and change. In view of the above, there is an urgent need for proactive measures as a part of climate change adaptation to sustain coconut productivity in the State of Kerala.The coconut productivity is more vulnerable to climate variability such as summer droughts rather than climate change in terms of increase in temperature and decline in rainfall, though there was a marginal decrease (1.6%) in the decade of 1981-2009 when compared to that of 1951-80. This aspect needs to be examined in detail by coconut development agencies such as Coconut Development Board and State Agriculture Department for remedial measures. Otherwise, the premier position of Kerala in terms of coconut production is likely to be lost in the ensuing years under the projected climate change scenario. Among the four cultivars studied, Tiptur Tall appears to be superior in terms of reproduction phase and nut yield. This needs to be examined by the coconut breeders in their crop improvement programme as a part of stress tolerant under rainfed conditions. Crop mix and integrated farming are supposed to be the best combination to sustain development in the long run under the projected climate change scenarios. Increase in coconut area under irrigation during summer with better crop management and protection measures also are necessary measures to increase coconut productivity since the frequency of intensity of summer droughts is likely to increase under projected global warming scenario.
Resumo:
The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-n values. Results for selected numbers of electrons and confining potentials are discussed.
Resumo:
A novel compact chipless RFID tag using spurline resonators is discussed in this paper. The detection of the tag's ID is using the spectral signature of a spurline resonator circuit. The tag has a data capacity of 8-bits in the range 2.38 to 4.04 GHz. The tag consists of a spurline multiresonating circuit and two cross polarized antennas. The prototype of the tag is fabricated on a substrate CMET/ LK4.3 of dielectric constant 4.3 and loss tangent 0.0018. The measured results show that group delay response can also be used to decode the tag’s identity
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
The increase in coastal storm frequency and intensity expected under most climate change scenarios is likely to substantially modify beach configuration and associated habitats. This study aimed to analyze the impact of coastal storms on a nesting population of the endangered Piping Plover (Charadrius melodus melodus) in southeastern New Brunswick, Canada. Previous studies have shown that numbers of nesting Piping Plovers may increase following storms that create new nesting habitat at individual beaches. However, to our knowledge, no test of this pattern has been conducted over a regional scale. We hypothesized that Piping Plover abundance would increase after large coastal storms occurring during the nonbreeding season. However, we expected a delay in the colonization of newly created habitat owing to low-density populations, combined with high site fidelity of adults and high variability in survival rate of subadults. We tested this hypothesis using a 27-year (1986-2012) data set of Piping Plover abundance and productivity (nesting pairs and fledged young) collected at five sites in eastern New Brunswick. We identified 11 major storms that could potentially have modified Piping Plover habitat over the study period. The number of fledged young increased three years after a major storm, but the relationship was much weaker for the number of nesting pairs. These findings are consistent with the hypothesized increase in suitable habitat after coastal storms. Including storm occurrence with other factors influencing habitat quality will enhance Piping Plover conservation strategies.
Resumo:
The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface flow and weak cross-gradient structure the prescribed heating induces a mean temperature anomaly proportional to the spatial Hilbert transform of the heating. The interior potential vorticity generated by the heating enhances this surface response. The time-varying part is independent of the heating and satisfies the usual linearized surface quasigeostrophic dynamics. It is shown that the surface temperature tendency is a spatial Hilbert transform of the temperature anomaly itself. It then follows that the temperature anomaly is periodically modulated with a frequency proportional to the vertical wind shear. A strong local bound on wave energy is also found. Reanalysis diagnostics are presented that indicate consistency with key findings from this theory.
Resumo:
Mostly because of a lack of observations, fundamental aspects of the St. Lawrence Estuary's wintertime response to forcing remain poorly understood. The results of a field campaign over the winter of 2002/03 in the estuary are presented. The response of the system to tidal forcing is assessed through the use of harmonic analyses of temperature, salinity, sea level, and current observations. The analyses confirm previous evidence for the presence of semidiurnal internal tides, albeit at greater depths than previously observed for ice-free months. The low-frequency tidal streams were found to be mostly baroclinic in character and to produce an important neap tide intensification of the estuarine circulation. Despite stronger atmospheric momentum forcing in winter, the response is found to be less coherent with the winds than seen in previous studies of ice-free months. The tidal residuals show the cold intermediate layer in the estuary is renewed rapidly ( 14 days) in late March by the advection of a wedge of near-freezing waters from the Gulf of St. Lawrence. In situ processes appeared to play a lesser role in the renewal of this layer. In particular, significant wintertime deepening of the estuarine surface mixed layer was prevented by surface stability, which remained high throughout the winter. The observations also suggest that the bottom circulation was intensified during winter, with the intrusion in the deep layer of relatively warm Atlantic waters, such that the 3 C isotherm rose from below 150 m to near 60 m.
Resumo:
A simple physical model of the atmospheric effects of large explosive volcanic eruptions is developed. Using only one input parameter - the initial amount of sulphur dioxide injected into the stratosphere - the global-average stratospheric optical-depth perturbation and surface temperature response are modelled. The simplicity of this model avoids issues of incomplete data (applicable to more comprehensive models), making it a powerful and useful tool for atmospheric diagnostics of this climate forcing mechanism. It may also provide a computationally inexpensive and accurate way of introducing volcanic activity into larger climate models. The modelled surface temperature response for an initial sulphur-dioxide injection, coupled with emission-history statistics, is used to demonstrate that the most climatically significant volcanic eruptions are those of sufficient explosivity to just reach into the stratosphere (and achieve longevity). This study also highlights the fact that this measure of significance is highly sensitive to the representation of the climatic response and the frequency data used, and that we are far from producing a definitive history of explosive volcanism for at least the past 1000 years. Given this high degree of uncertainty, these results suggest that eruptions that release around and above 0.1 Mt SO2 into the stratosphere have the maximum climatic impact.
Resumo:
A connection is shown to exist between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993–2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward along 10°–15°S in response to the Indian Ocean dipole (IOD) events. Positive (negative) SSH anomalies associated to a positive (negative) IOD phase induce a shift in the intensity and position of the tropical and subtropical gyres. A weakening (strengthening) results in the intensity of the South Equatorial Current and its branches along east Madagascar. In addition, the flow through the narrows of the Mozambique Channel around 17°S increases (decreases) during periods of a stronger and northward (southward) extension of the subtropical (tropical) gyre. Interaction between the currents in the narrows and southward propagating eddies from the northern Channel leads to interannual variability in the eddy kinetic energy of the central Channel in phase with the one in the SSH-field.
Resumo:
Cercal hairs represent in cricket a wind sensitive escape system, able to detect the airflow generated from predating species. These sensors have been studied as a biomimetic concept to allow the development of MEMS for biomedical use. In particular, the behaviour of the hairs, including airflow response, resonant frequency and damping, has been investigated up to a frequency of 20 kHz. The microscopic nature of the hairs, the complex vibrations of excited hairs and the high damping of the system suggested that the use of Laser Doppler vibrometry could possibly improve the test performance. Two types of tests were performed: in the first case the hairs were indirectly excited using the signal obtained from a vibrating aluminium plate, whilst in the second case the hairs were directly excited using a white noise chirp. The results from the first experiment indicated that the hairs move in-phase with the exciting signal up to frequencies in the order of 10 kHz, responding to the vibration modes of the plate with a signal attenuation of 12 to 20 dB. The chirp experiment revealed the presence of rotational resonant modes at 6850 and 11300 Hz. No clear effect of hair length was perceivable on the vibration response of the filiform sensors. The obtained results proved promising to support the mechanical and vibration characterisation of the hairs and suggest that scanning Laser vibrometry can be used extensively on highly dampened biological materials.
Resumo:
Purpose. Some children with visual stress and/or headaches have fewer symptoms when wearing colored lenses. Although subjective reports of improved perception exist, few objective correlates of these effects have been established. Methods. In a pilot study, 10 children who wore Intuitive Colorimeter lenses, and claimed benefit, and two asymptomatic children were tested. Steady-state potentials were measured in response to low contrast patterns modulating at a frequency of 12 Hz. Four viewing conditions were compared: 1) no lens; 2) Colorimeter lens; 3) lens of complementary color; and 4) spectrally neutral lens with similar photopic transmission. Results. The asymptomatic children showed little or no difference between the lens and no lens conditions. When all the symptomatic children were tested together, a similar result was found. However, when the symptomatic children were divided into two groups depending on their symptoms, an interaction emerged. Children with visual stress but no headaches showed the largest amplitude visual evoked potential response in the no lens condition, whereas those children whose symptoms included severe headaches or migraine showed the largest amplitude visual evoked potential response when wearing their prescribed lens. Conclusions. The results suggest that it is possible to measure objective correlates of the beneficial subjective perceptual effects of colored lenses, at least in some children who have a history of migraine or severe headaches.
Resumo:
This study investigates the human response to impulse perturbations at the midpoint of a haptically-guided straight-line point-to-point movement. Such perturbation response may be used as an assessment tool during robot-mediated neuro-rehabilitation therapy. Subjects show variety in their perturbation responses. Movements with a lower perturbation displacement exhibit high frequency oscillations, indicative of increased joint stiffness. Equally, movements with a high perturbation displacement exhibit lower frequency oscillations with higher amplitude and a longer settling time. Some subjects show unexpected transients during the perturbation impulse, which may be caused by complex joint interactions in the hand and arm.