887 resultados para Fourier Transform Infrared Spectrometry
Resumo:
A series of superabsorbent composites containing Montmorillonite (MMT), modified- Montmorillonite (OMMT) and sodium acrylate were synthesized by free-radical polymerization in aqueous solution. The structure of composites was characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and the results showed that the polymer chains were grafted onto the edge and the surface of MMT or OMMT. At the same time, the equilibrium swelling ratio of the composites was investigated as a function of the clay content and the results showed that the equilibrium swelling ratio of composites was improved by the introduction of clay.
Resumo:
In this investigation, hydrophobically modified polyacrylamide with low amounts of anionic long-chain alkyl was synthesized by the free radical polymerization in deionized water. This water-soluble copolymerization method is more convenient compared with the traditional micellar copolymerization methods. The copolymers were characterized using Fourier transform infrared, H-1 NMR, and the molecular weight and polydispersity were determined using gel permeation chromatography. The solution behavior of the copolymers was studied as a function of composition, pH, and added electrolytes. As NaCl was added to solutions of AM/C(11)AM copolymers or pH was lowered, the shielding or elimination of electrostatic repulsions between carboxylate groups of the C(11)AM unit lead to coil shrinkage.
Resumo:
Novel sulfonated poly [bis(benzimidazobenzisoquinolinones)] as hydrolytically and thermooxidatively stable electrolyte for high -temperature fuel cell applications are reported. A series of sulfonated polymers (SPBIBI-x, x refers to molar percentage of sulfonated dianhydride monomer) were synthesized from 6,6'-disulfonic-4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (SBTDA), 4,4-binaphthyl-1,1,8,8-tetracarboxylic dianhydride (BTDA), and 3,3'-diaminobenzidine. The chemical structures of those polymers as well as model compounds synthesized from SBTDA and o-phenylenediamine were confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR).
Resumo:
Ordered mesoporous silica (MCM-41) particles with different morphologies were synthesized through a simple hydrothermal process. Then these silica particles were functionalized with luminescent YVO4:EU3+ layers via the Pechini sol-gel process. The obtained YVO4:Eu3+ and MCM-41 composites, which maintained the mesoporous structure of MCM-41 and the red luminescence property of YVO4:Eu3+ were investigated as drug delivery systems using ibuprofen (IBU) as model drug. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption, and photoluminescence (PL) spectra, respectively.
Resumo:
One-dimensional YVO4:Ln and Y(V, P)O-4:Ln nanofibers and quasi-one-dimensional YVO4:Ln microbelts (Ln = Eu3+, Sm3+, Dy3+) have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples.
Resumo:
Lanthanide fluoride LnF(3) (Ln = La to Lu) nano-/microcrystals with multiform crystal structures (hexagonal and orthorhombic) and morphologies (separated elongated nanoparticles, aggregated nanoparticles, polyhedral microcrystals) were successfully synthesized by a facile, effective, and environmentally friendly hydrothermal method. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were used to characterize the samples. The experimental results indicated that the use of NaBF4 is indispensable for obtaining LnF(3) crystal structures.
Resumo:
In this paper, we present a facile and general synthetic route to high-quality alkaline earth metal fluoride (AEF(2), AE = Ca, Sr, Ba) nanocrystals and CaF2:Tb3+ nanocrystals based on the thermal decomposition of corresponding trifluoroacetate precursors in hot oleylamine. X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectra, photoluminescence spectra, and kinetic decays were employed to characterize the samples. The use of single-source precursors plays an important role in the formation of high-quality AEF(2) nanocrystals, and the formation process is demonstrated in detail.
Resumo:
Tb(1-x)BO3:xEu(3+) (x = 0-1) microsphere phosphors have been successfully prepared by a simple hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as lifetimes were used to characterize the samples.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
An interesting shape evolution of. PbS crystals, that is, from cubes to (truncated) octahedra and finally to stable star-shaped multipods with six arms along the < 100 > directions is first realized via a facile polyol-mediated reaction between lead acetate and sulfur powder in the absence of surfactants. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) techniques were employed to characterize the samples. We elucidate the important parameters (including reaction temperature and sulfur sources) responsible for the shape-controlled synthesis of PbS crystals.
Resumo:
MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.
Resumo:
Urea bridged organic-inorganic hybrid mesoporous SiO2 materials (U-BSQMs) were synthesized through a sol-gel procedure by co-condensation of bis(triethoxysilyl propyl) urea (BSPU) under basic conditions using cetyltrimethylammonium bromide (CTAB) as organic template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the mesoporous structure of the sample. Fourier-transform infrared spectroscopy (FT-IR), solid state CP-MAS NMR spectroscopy of Si-29 (Si-29, CP-MAS NMR) and C-13 (C-13 CP NMR) indicated that most of the Si-C bonds are unbroken during the synthesis process.
Resumo:
In this paper, nanocrystalline YVO4:Eu3+ powders have been successfully synthesized via high-temperature solution-phase synthesis process. The nanocrystalline YVO4:Eu3+ particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UVNis absorption spectra and luminescence spectra, luminescence decay curve and Fourier transform infrared (FT-IR), X-ray photoelectron spectra (XPS) respectively. The as-prepared nanocrystalline YVO4:Eu3+ particles are well crystallized with ellipsoidal morphology.
Resumo:
Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4.
Resumo:
By using ethylenediamine as both an alkali and ligand, quantum size SnO2, nanocrystallites were synthesized with a solvothermal route. The transmission electron micrographs (TEM) were employed to characterize the morphologies of the products. The crystal sizes of the as-synthesized SnO2 were ranged form 2.5 to 3.6 nm. The crystal structure and optical properties of the products were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, optical absorption spectra, photoluminescence and Raman spectra.