982 resultados para Fluid Balance
Resumo:
The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6 +/- 1 Gta(-1), which decreases about sixfold to -35 +/- 2 Gta(-1) by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12 +/- 2 Gta(-1) by the 2080s. We also find that 10.6 and 27 % of the glaciers could face `eventual disappearance' by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.
Resumo:
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.
Resumo:
This study reports the constitutive response and energy absorption capabilities of fluid-impregnated carbon nanotube (CNT) foams under compressive loading as a function of fluid viscosity and loading rates. At all strain rates tested, we observe two characteristic regimes: below a critical value, increasing fluid viscosity increases the load bearing and energy absorption capacities; after a critical value of the fluid's viscosity, we observe a rapid decrease in the systems' mechanical performance. For a given fluid viscosity, the load bearing capacity of the structure slightly decreases with strain rate. A phenomenological model, accounting for fluid-CNT interaction, is developed to explain the observed mechanical behavior. (C) 2014 AIP Publishing LLC.
Resumo:
Coupled wavenumbers in infinite fluid-filled isotropic and orthotropic cylindrical shells are considered. Using the Donnell-Mushtari (DM) theory for thin shells, compact and elegant asymptotic expansions for the wavenumbers are found at an intermediate fluid loading for both the coupled rigid-duct modes (''fluid-originated'') and the coupled structural wavenumbers (''structure-originated modes'') over the entire frequency range where DM theory is valid. The coupled rigid-duct expansions are found to be valid for O(1) orthotropy and for all circumferential orders, whereas the coupled structural wavenumber expansions are valid for small orthotropy and for low circumferential orders. These two above results are then used to derive the expansions for a set of multiple complex roots that display a locking behavior at this intermediate fluid-loading. The expansions are matched with the numerical solutions of the coupled dispersion relation and the match is found to be good over most of the frequency range. (C) 2014 Acoustical Society of America.
Resumo:
The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I-3/I-1 shows a power-law behavior with strain amplitude. In addition, I-3/I-1 and the elastic component of stress amplitude sigma(E)(0) show a very prominent maximum at the strain value where the number density (n(v)) of the Taylor vortices is maximum. A subsequent increase in applied strain (gamma) results in the distortions of the vortices and a concomitant decrease in n(v), accompanied by a sharp drop in I-3 and sigma(E)(0). The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of gamma corresponding to the peak of I-3, similar to that observed for hard-sphere glasses.
Resumo:
Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam. (C) 2014 AIP Publishing LLC.
Resumo:
Simplified equations are derived for a granular flow in the `dense' limit where the volume fraction is close to that for dynamical arrest, and the `shallow' limit where the stream-wise length for flow development (L) is large compared with the cross-stream height (h). The mass and diameter of the particles are set equal to 1 in the analysis without loss of generality. In the dense limit, the equations are simplified by taking advantage of the power-law divergence of the pair distribution function chi proportional to (phi(ad) - phi)(-alpha), and a faster divergence of the derivativ rho(d chi/d rho) similar to (d chi/d phi), where rho and phi are the density and volume fraction, and phi(ad) is the volume fraction for arrested dynamics. When the height h is much larger than the conduction length, the energy equation reduces to an algebraic balance between the rates of production and dissipation of energy, and the stress is proportional to the square of the strain rate (Bagnold law). In the shallow limit, the stress reduces to a simplified Bagnold stress, where all components of the stress are proportional to (partial derivative u(x)/partial derivative y)(2), which is the cross-stream (y) derivative of the stream-wise (x) velocity. In the simplified equations for dense shallow flows, the inertial terms are neglected in the y momentum equation in the shallow limit because the are O(h/L) smaller than the divergence of the stress. The resulting model contains two equations, a mass conservation equations which reduces to a solenoidal condition on the velocity in the incompressible limit, and a stream-wise momentum equation which contains just one parameter B which is a combination of the Bagnold coefficients and their derivatives with respect to volume fraction. The leading-order dense shallow flow equations, as well as the first correction due to density variations, are analysed for two representative flows. The first is the development from a plug flow to a fully developed Bagnold profile for the flow down an inclined plane. The analysis shows that the flow development length is ((rho) over barh(3)/B) , where (rho) over bar is the mean density, and this length is numerically estimated from previous simulation results. The second example is the development of the boundary layer at the base of the flow when a plug flow (with a slip condition at the base) encounters a rough base, in the limit where the momentum boundary layer thickness is small compared with the flow height. Analytical solutions can be found only when the stream-wise velocity far from the surface varies as x(F), where x is the stream-wise distance from the start of the rough base and F is an exponent. The boundary layer thickness increases as (l(2)x)(1/3) for all values of F, where the length scale l = root 2B/(rho) over bar. The analysis reveals important differences between granular flows and the flows of Newtonian fluids. The Reynolds number (ratio of inertial and viscous terms) turns out to depend only on the layer height and Bagnold coefficients, and is independent of the flow velocity, because both the inertial terms in the conservation equations and the divergence of the stress depend on the square of the velocity/velocity gradients. The compressibility number (ratio of the variation in volume fraction and mean volume fraction) is independent of the flow velocity and layer height, and depends only on the volume fraction and Bagnold coefficients.
Resumo:
The Onsager model for the secondary flow field in a high-speed rotating cylinder is extended to incorporate the difference in mass of the two species in a binary gas mixture. The base flow is an isothermal solid-body rotation in which there is a balance between the radial pressure gradient and the centrifugal force density for each species. Explicit expressions for the radial variation of the pressure, mass/mole fractions, and from these the radial variation of the viscosity, thermal conductivity and diffusion coefficient, are derived, and these are used in the computation of the secondary flow. For the secondary flow, the mass, momentum and energy equations in axisymmetric coordinates are expanded in an asymptotic series in a parameter epsilon = (Delta m/m(av)), where Delta m is the difference in the molecular masses of the two species, and the average molecular mass m(av) is defined as m(av) = (rho(w1)m(1) + rho(w2)m(2))/rho(w), where rho(w1) and rho(w2) are the mass densities of the two species at the wall, and rho(w) = rho(w1) + rho(w2). The equation for the master potential and the boundary conditions are derived correct to O(epsilon(2)). The leading-order equation for the master potential contains a self-adjoint sixth-order operator in the radial direction, which is different from the generalized Onsager model (Pradhan & Kumaran, J. Fluid Mech., vol. 686, 2011, pp. 109-159), since the species mass difference is included in the computation of the density, viscosity and thermal conductivity in the base state. This is solved, subject to boundary conditions, to obtain the leading approximation for the secondary flow, followed by a solution of the diffusion equation for the leading correction to the species mole fractions. The O(epsilon) and O(epsilon(2)) equations contain inhomogeneous terms that depend on the lower-order solutions, and these are solved in a hierarchical manner to obtain the O(epsilon) and O(epsilon(2)) corrections to the master potential. A similar hierarchical procedure is used for the Carrier-Maslen model for the end-cap secondary flow. The results of the Onsager hierarchy, up to O(epsilon(2)), are compared with the results of direct simulation Monte Carlo simulations for a binary hard-sphere gas mixture for secondary flow due to a wall temperature gradient, inflow/outflow of gas along the axis, as well as mass and momentum sources in the flow. There is excellent agreement between the solutions for the secondary flow correct to O(epsilon(2)) and the simulations, to within 15 %, even at a Reynolds number as low as 100, and length/diameter ratio as low as 2, for a low stratification parameter A of 0.707, and when the secondary flow velocity is as high as 0.2 times the maximum base flow velocity, and the ratio 2 Delta m/(m(1) + m(2)) is as high as 0.5. Here, the Reynolds number Re = rho(w)Omega R-2/mu, the stratification parameter A = root m Omega R-2(2)/(2k(B)T), R and Omega are the cylinder radius and angular velocity, m is the molecular mass, rho(w) is the wall density, mu is the viscosity and T is the temperature. The leading-order solutions do capture the qualitative trends, but are not in quantitative agreement.
Resumo:
In this paper, linear stability analysis on a Newtonian fluid film flowing under the effect of gravity over an inclined porous medium saturated with the same fluid in isothermal condition is carried out. The focus is placed on the effect of the anisotropic and inhomogeneous variations in the permeability of the porous medium on the shear mode and surface mode instabilities. The fluid-porous system is modelled by a coupled two-dimensional Navier-Stokes/Darcy problem. The perturbation equations are solved numerically using the Chebyshev collocation method. Detailed stability characteristics as a function of the depth ratio (the ratio of the depth of the fluid layer to that of the porous layer), the anisotropic parameter (the ratio of the permeability in the direction of the basic flow to that in the direction transverse to the basic flow) and the inhomogeneity functions are presented.
Resumo:
In this study, we applied the integration methodology developed in the companion paper by Aires (2014) by using real satellite observations over the Mississippi Basin. The methodology provides basin-scale estimates of the four water budget components (precipitation P, evapotranspiration E, water storage change Delta S, and runoff R) in a two-step process: the Simple Weighting (SW) integration and a Postprocessing Filtering (PF) that imposes the water budget closure. A comparison with in situ observations of P and E demonstrated that PF improved the estimation of both components. A Closure Correction Model (CCM) has been derived from the integrated product (SW+PF) that allows to correct each observation data set independently, unlike the SW+PF method which requires simultaneous estimates of the four components. The CCM allows to standardize the various data sets for each component and highly decrease the budget residual (P - E - Delta S - R). As a direct application, the CCM was combined with the water budget equation to reconstruct missing values in any component. Results of a Monte Carlo experiment with synthetic gaps demonstrated the good performances of the method, except for the runoff data that has a variability of the same order of magnitude as the budget residual. Similarly, we proposed a reconstruction of Delta S between 1990 and 2002 where no Gravity Recovery and Climate Experiment data are available. Unlike most of the studies dealing with the water budget closure at the basin scale, only satellite observations and in situ runoff measurements are used. Consequently, the integrated data sets are model independent and can be used for model calibration or validation.
Resumo:
An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K+ conductance, but not in M-type K+ conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (R-in) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, R in, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.
Resumo:
We consider a system consisting of 5 dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically AdS(5) region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.
Resumo:
The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.
Resumo:
A direct discretization approach and an operator-splitting scheme are applied for the numerical simulation of a population balance system which models the synthesis of urea with a uni-variate population. The problem is formulated in axisymmetric form and the setup is chosen such that a steady state is reached. Both solvers are assessed with respect to the accuracy of the results, where experimental data are used for comparison, and the efficiency of the simulations. Depending on the goal of simulations, to track the evolution of the process accurately or to reach the steady state fast, recommendations for the choice of the solver are given. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Many boundary value problems occur in a natural way while studying fluid flow problems in a channel. The solutions of two such boundary value problems are obtained and analysed in the context of flow problems involving three layers of fluids of different constant densities in a channel, associated with an impermeable bottom that has a small undulation. The top surface of the channel is either bounded by a rigid lid or free to the atmosphere. The fluid in each layer is assumed to be inviscid and incompressible, and the flow is irrotational and two-dimensional. Only waves that are stationary with respect to the bottom profile are considered in this paper. The effect of surface tension is neglected. In the process of obtaining solutions for both the problems, regular perturbation analysis along with a Fourier transform technique is employed to derive the first-order corrections of some important physical quantities. Two types of bottom topography, such as concave and convex, are considered to derive the profiles of the interfaces. We observe that the profiles are oscillatory in nature, representing waves of variable amplitude with distinct wave numbers propagating downstream and with no wave upstream. The observations are presented in tabular and graphical forms.