978 resultados para Flow-induced drop coalescence
Resumo:
Bothrops jararacussu myotoxin I (BthTx-I; Lys 49) and II (BthTX-II; Asp 49) were purified by ion-exchange chromatography and reverse phase HPLC. In this work we used the isolated perfused rat kidney method to evaluate the renal effects of B. jararacussu myotoxins I (Lys49 PLA(2)) and II (Asp49 PLA(2)) and their possible blockage by indomethacin. BthTX-1 (5 mu g/ml) and BthTX-II (5 mu g/ml) increased perfusion pressure (PP; ct(120) = 110.28+/-3.70 mmHg; BthTX I = 171.28+/-6.30* mmHg; BthTX II = 175.50+/-7.20* mmHg), renal vascular resistance (RVR; ct(120) = 5.49+/-0.54 mmHg/ml.g(-1) min(-1); BthTX I = 8.62+/-0.37* mmHg/ml g(-1) min(-1); BthTX II=8.9+/-0.36* mmHg/ml g(-1) min(-1)), urinary flow (UF; ct(120)= 0.14+/-0.01 ml g(-1) min(-1); BthTX I=0.32+/-0.05* ml g(-1) min(-1); BthTX II=0.37+/-0.01* ml g(-1) min(-1)) and glomerular filtration rate (GFR; ct(120)=0.72+/-0.10 ml g(-1) min(-1); BthTX I=0.85+/-0.13* ml g(-1) min(-1); BthTX II=1.22+/-0.28* ml g(-1) min(-1)). In contrast decreased the percent of sodium tubular transport (%TNa+; ct(120)=79,76+/-0.56; BthTX I=62.23+/-4.12*; BthTX II=70.96+/-2.93*) and percent of potassium tubular transport (%TK+;ct(120)=66.80+/-3.69; BthTX I=55.76+/-5.57*; BthTX II=50.86+/-6.16*). Indomethacin antagonized the vascular, glomerular and tubular effects promoted by BthTX I and it's partially blocked the effects of BthTX II. In this work also evaluated the antibacterial effects of BthTx-I and BthTx-II against Xanthomonas axonopodis. pv. passiflorae (Gram-negative bacteria) and we observed that both PLA2 showed antibacterial activity. Also we observed that proteins Also we observed that proteins chemically modified with 4-bromophenacyl bromide (rho-BPB) decrease significantly the antibacterial effect of both PLA(2). In conclusion, BthTx I and BthTX II caused renal alteration and presented activity antimicrobial. The indomethacin was able to antagonize totally the renal effects induced by BthTx I and partially the effects promoted by BthTx II, suggesting involvement of inflammatory mediators in the renal effects caused by myotoxins. In the other hand, other effects could be independently of the enzymatic activity of the BthTX II and the C-terminal domain could be involved in both effects promoted for PLA(2). (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tityus serrulatus, popularly known as yellow scorpion, is one of the most studied scorpion species in South America and its venom has supplied some highly active molecules. The effects of T. serrulatus venom upon the renal physiology in human showed increased renal parameters, urea and creatinine. However, in perfused rat kidney the effects were not tested until now. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution containing 6% (g weight) of previously dialysed bovine serum albumin. The effects of T. serrulatus venom were studied on the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), sodium tubular transport (%TNa+), potassium tubular transport (%TK+) and chloride tubular transport (%TCl-). Tityus serrulatus venom (TsV; 10 mu g/mL) was added to the system 30 min after the beginning of each experiment (n = 6). This 30 min period was used as an internal control. The mesenteric bed was perfused with Krebs solution kept warm at 37 T by a constant flow (4 mL/min), while the variable perfusion pressure was measured by means of a pressure transducer. The direct vascular effects of TsV (10 mu g/mL/min; n=6), infused at a constant rate (0.1 mL/min), were examined and compared to the infusion of the vehicle alone at the same rate. TsV increased PP (PP30'= 127.8 +/- 0.69 vs PP60' = 154.2 +/- 14 mmHg*, *p < 0.05) and RVR (RVR30' = 6.29 +/- 0.25 vs RVR60' = 8.03 +/- 0.82 mmHg/mL g(-1) min(-1)*, *p < 0.05), decreased GFR (GFR(30') =0.58 +/- 0.02 vs GFR(60') = 0.46 +/- 0.01 mL g(-1) min(-1)*, *p < 0.05) and UF (UF30' = 0.135 +/- 0.001 vs UF60' = 0.114 +/- 0.003 mL g(-1)min(-1)*, *p < 0.05). Tubular transport was not affected during the whole experimental period (120 min). on the other hand, the infusion of TsV (10 mu g/mL/min) increased the basal perfusion pressure of isolated arteriolar mesenteric bed (basal pressure: 74.17 +/- 3.42 vs TsV 151.8 +/- 17.82 mmHg*, *p < 0.05). TsV affects renal haemodynamics probably by a direct vasoconstrictor action leading to decreased renal flow. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Renal changes determined by Lys49 myotoxin I (BmTx I), isolated from Bothrops moojeni are well known. The scope of the present study was to investigate the possible mechanisms involved in the production of these effects by using indomethacin (10 mu g/mL), a non-selective inhibitor of cyclooxygenase, and tezosentan (10 mu g/mL), an endothelin antagonist. By means of the method of mesenteric vascular bed, it has been observed that B. moojeni myotoxin (5 mu g/mL) affects neither basal perfusion pressure nor phenylephrine-preconstricted vessels. This fact suggests that the increase in renal perfusion pressure and in renal vascular resistance did not occur by a direct effect on renal vasculature. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution. The infusion of BmTx-I increased perfusion pressure, renal vascular resistance, urinary flow and glomerular filtration rate. Sodium, potassium and chloride tubular transport was reduced after addition of BmTx-I. Indomethacin blocked the effects induced by BmTx-I on perfusion pressure and renal vascular resistance, however, it did not revert the effect on urinary flow and sodium, potassium and chloride tubular transport. The alterations of glomerular filtration rate were inhibited only at 90 min of perfusion. The partial blockade exerted by indomethacin treatment showed that prostaglandins could have been important mediators of BmTx-I renal effects, but the participation of other substances cannot be excluded.The blockage of all renal alterations observed after tezosentan treatment support the hypothesis that endothelin is the major substance involved in the renal pathophysiologic alterations promoted by the Lys49 PLA(2) myotoxin I, isolated from B. moojeni. In conclusion, the rather intense renal effects promoted by B. moojeni myotoxin-I were probably caused by the release of renal endothelin, interfering with the renal parameters studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We consider laminar high-Reynolds-number flow through a finite-length planar channel, where a portion of one wall is replaced by a thin massless elastic membrane that is held under longitudinal tension T and subject to an external pressure distribution. The flow is driven by a fixed pressure drop along the full length of the channel. We investigate the global stability of two-dimensional Poiseuille flow using a method of matched local eigenfunction expansions, which is compared to direct numerical simulations. We trace the neutral stability curve of the primary oscillatory instability of the system, illustrating a transition from high-frequency ‘sloshing’ oscillations at high T to vigorous ‘slamming’ motion at low T . Small-amplitude sloshing at high T can be captured using a low-order eigenmode truncation involving four surface-based modes in the compliant segment of the channel coupled to Womersley flow in the rigid segments. At lower tensions, we show that hydrodynamic modes contribute increasingly to the global instability and we demonstrate a change in the mechanism of energy transfer from the mean flow, with viscous effects being destabilising. Simulations of finite-amplitude oscillations at low T reveal a generic slamming motion, in which the the flexible membrane is drawn close to the opposite rigid wall before rapidly recovering. A simple model is used to demonstrate how fluid inertia in the downstream rigid channel segment, coupled to membrane curvature downstream of the moving constriction, together control slamming dynamics.
Resumo:
Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.
Resumo:
We examined the optical properties of nanolayered metal-dielectric lattices. At subwavelength regimes, the periodic array of metallic nanofilms demonstrates nonlocality-induced double refraction, conventional positive and as well as negative. In particular, we report on energy-flow considerations concerning both refractive behaviors concurrently. Numerical simulations provide transmittance of individual beams in Ag-TiO2 metamaterials under different configurations. In regimes of the effective-medium theory predicting elliptic dispersion, negative refraction may be stronger than the expected positive refraction.
Resumo:
O estudo foi efetuado durante o período de chuva (dezembro-fevereiro) em seis viveiros de produção semi-intensiva de peixes, a fim de avaliar o efeito da chuva na qualidade da água de viveiros que apresentam fluxo contínuo de água, a qual é passada de um viveiro para outro sem tratamento prévio. Foram amostrados oito pontos de coleta nas saídas dos viveiros. O viveiro P1 (próximo à nascente) apresentou as menores concentrações físicas e químicas da água e as maiores no viveiro P4 (considerado um ponto crítico recebendo material alóctone proveniente de outros viveiros e do escoamento do setor de criação de rãs). A disposição seqüencial dos viveiros estudados promoveu aumento nas concentrações dos nutrientes, clorofila-a e condutividade. As chuvas características desta época do ano aumentaram o fluxo de água nos viveiros e conseqüentemente, carreando material particulado e dissolvido de um viveiro para outro e, promovendo um aumento das variáveis limnológicas em direção do P3 ao P6. Os resultados sugerem que a chuva no período de estudo afetou positivamente a qualidade da água dos viveiros estudados, porém, como os sistemas analisados estão dispostos em distribuição seqüencial e escoamento constante da água de viveiros e tanques paralelos sem tratamento prévio, cuidados devem ser averiguados para que o aumento do fluxo de água provocado pelas chuvas não tenha efeito adverso nos viveiros estudados.
Resumo:
Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in varying proportions. Ethanol/dichloromethane blend was used as solvent in a ratio of 1:1. The floating microspheres were evaluated for flow properties, particle size, incorporation efficiency, as well as in-vitro floatability and drug release. The anti-diabetic activity of the floating microspheres of batch FM4 was performed on alloxaninduced diabetic rats. Result: The floating microspheres had particle size, buoyancy, drug entrapment efficiency and yield in the ranges of 255.32 - 365.65 μm, 75.58 - 89.59, 72.6 - 83.5, and 60.46 - 80.02 %, respectively. Maximum drug release after 24 h was 82.62 % for formulation FM4 and 73.879, 58.613 and 46.106 % for formulations FM1, FM2, and FM3 respectively. In-vivo data obtained over a 120-h period indicate that curcumin floating microspheres from batch FM4 showed the better glycemic control than control and a commercial brand of the drug. Conclusion: The developed floating curcumin delivery system seems economical and effective in diabetes management in rats, and enhances the bioavailability of the drug.
Resumo:
This study mainly aims to provide an inter-industry analysis through the subdivision of various industries in flow of funds (FOF) accounts. Combined with the Financial Statement Analysis data from 2004 and 2005, the Korean FOF accounts are reconstructed to form "from-whom-to-whom" basis FOF tables, which are composed of 115 institutional sectors and correspond to tables and techniques of input–output (I–O) analysis. First, power of dispersion indices are obtained by applying the I–O analysis method. Most service and IT industries, construction, and light industries in manufacturing are included in the first quadrant group, whereas heavy and chemical industries are placed in the fourth quadrant since their power indices in the asset-oriented system are comparatively smaller than those of other institutional sectors. Second, investments and savings, which are induced by the central bank, are calculated for monetary policy evaluations. Industries are bifurcated into two groups to compare their features. The first group refers to industries whose power of dispersion in the asset-oriented system is greater than 1, whereas the second group indicates that their index is less than 1. We found that the net induced investments (NII)–total liabilities ratios of the first group show levels half those of the second group since the former's induced savings are obviously greater than the latter.
Resumo:
Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^
Resumo:
The protective immune response generated by a commercial monovalent inactivated vaccine against bluetongue virus serotype 1 (BTV1) was studied. Five sheep were vaccinated, boost-vaccinated, and then challenged against BTV1 ALG/2006. RT-PCR did not detect viremia at any time during the experiment. Except a temperature increase observed after the initial and boost vaccinations, no clinical signs or lesions were observed. A specific and protective antibody response checked by ELISA was induced after vaccination and boost vaccination. This specific antibody response was associated with a significant increase in B lymphocytes confirmed by flow cytometry, while significant increases were not observed in T lymphocyte subpopulations (CD4(+), CD8(+), and WC1(+)), CD25(+) regulatory cells, or CD14(+) monocytes. After challenge with BTV1, the antibody response was much higher than during the boost vaccination period, and it was associated with a significant increase in B lymphocytes, CD14(+) monocytes, CD25(+) regulatory cells, and CD8(+) cytotoxic T lymphocytes.
Resumo:
Abstract : Recently, there is a great interest to study the flow characteristics of suspensions in different environmental and industrial applications, such as snow avalanches, debris flows, hydrotransport systems, and material casting processes. Regarding rheological aspects, the majority of these suspensions, such as fresh concrete, behave mostly as non-Newtonian fluids. Concrete is the most widely used construction material in the world. Due to the limitations that exist in terms of workability and formwork filling abilities of normal concrete, a new class of concrete that is able to flow under its own weight, especially through narrow gaps in the congested areas of the formwork was developed. Accordingly, self-consolidating concrete (SCC) is a novel construction material that is gaining market acceptance in various applications. Higher fluidity characteristics of SCC enable it to be used in a number of special applications, such as densely reinforced sections. However, higher flowability of SCC makes it more sensitive to segregation of coarse particles during flow (i.e., dynamic segregation) and thereafter at rest (i.e., static segregation). Dynamic segregation can increase when SCC flows over a long distance or in the presence of obstacles. Therefore, there is always a need to establish a trade-off between the flowability, passing ability, and stability properties of SCC suspensions. This should be taken into consideration to design the casting process and the mixture proportioning of SCC. This is called “workability design” of SCC. An efficient and non-expensive workability design approach consists of the prediction and optimization of the workability of the concrete mixtures for the selected construction processes, such as transportation, pumping, casting, compaction, and finishing. Indeed, the mixture proportioning of SCC should ensure the construction quality demands, such as demanded levels of flowability, passing ability, filling ability, and stability (dynamic and static). This is necessary to develop some theoretical tools to assess under what conditions the construction quality demands are satisfied. Accordingly, this thesis is dedicated to carry out analytical and numerical simulations to predict flow performance of SCC under different casting processes, such as pumping and tremie applications, or casting using buckets. The L-Box and T-Box set-ups can evaluate flow performance properties of SCC (e.g., flowability, passing ability, filling ability, shear-induced and gravitational dynamic segregation) in casting process of wall and beam elements. The specific objective of the study consists of relating numerical results of flow simulation of SCC in L-Box and T-Box test set-ups, reported in this thesis, to the flow performance properties of SCC during casting. Accordingly, the SCC is modeled as a heterogeneous material. Furthermore, an analytical model is proposed to predict flow performance of SCC in L-Box set-up using the Dam Break Theory. On the other hand, results of the numerical simulation of SCC casting in a reinforced beam are verified by experimental free surface profiles. The results of numerical simulations of SCC casting (modeled as a single homogeneous fluid), are used to determine the critical zones corresponding to the higher risks of segregation and blocking. The effects of rheological parameters, density, particle contents, distribution of reinforcing bars, and particle-bar interactions on flow performance of SCC are evaluated using CFD simulations of SCC flow in L-Box and T-box test set-ups (modeled as a heterogeneous material). Two new approaches are proposed to classify the SCC mixtures based on filling ability and performability properties, as a contribution of flowability, passing ability, and dynamic stability of SCC.
Resumo:
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
The thesis deals with the experimental investigation of turbulent pipe flow at high Reynolds number. Wall-bounded turbulence is an extremely relevant topic for engineering and natural science applications and yet many aspects of the physics are not clear due to the difficulty in performing high Re experiments. To overcome these difficulties the CICLoPE Laboratory was developed, the main element of which is the Long Pipe wind tunnel. The facility is unique in its kind, as thanks to its large scale it delivers a flow quality and resolution that can not be achieved elsewhere at these Reynolds number. Reported here are the results from the first experimental campaign performed in the facility. A first part of the results presented concerns the characterization of this new facility. Flow quality and stability are assessed, particular attention is given to the characterization of pressure drop. The scaling of velocity fluctuations is analysed. The magnitude of the inner peak of the streamwise normal stress shows an increasing trend up to the highest Reynolds number examined, while no outer peak was clearly distinguishable from present measurements. Scaling of coherent motions is investigated via spectral analysis. An inner and outer spectral peaks are identified, with the former scaling in inner units while the latter neither following inner nor outer scaling, and increasing in magnitude with Re. Analysis of the spectra at y+ ≈ 15 shows how the increase of Reynolds normal stress is related to the influence of large scales in the inner wall region. Quadrant analysis was carried out on streamwise and wall-normal velocity fluctuations. The results show the important role in contribution to Reynolds shear stress of highly intermittent and strong events like ejections, that assume an even more intermittent and dominant role with the increase of Reynolds number.