841 resultados para Flexible device
Resumo:
The inability of rational expectation models with money supply rules to deliver inflation persistence following a transitory deviation of money growth from trend is due to the rapid adjustment of the price level to expected events. The observation of persistent inflation in macroeconomic data leads many economists to believe that prices adjust sluggishly and/or expectations must not be rational. Inflation persistence in U.S. data can be characterized by a vector autocorrelation function relating inflation and deviations of output from trend. In the vector autocorrelation function both inflation and output are highly persistent and there are significant positive dynamic cross-correlations relating inflation and output. This paper shows that a flexible-price general equilibrium business cycle model with money and a central bank using a Taylor rule can account for these patterns. There are no sticky prices and no liquidity effects. Agents decisions in a period are taken only after all shocks are observed. The monetary policy rule transforms output persistence into inflation persistence and creates positive cross-correlations between inflation and output.
Resumo:
My dissertation focuses on dynamic aspects of coordination processes such as reversibility of early actions, option to delay decisions, and learning of the environment from the observation of other people’s actions. This study proposes the use of tractable dynamic global games where players privately and passively learn about their actions’ true payoffs and are able to adjust early investment decisions to the arrival of new information to investigate the consequences of the presence of liquidity shocks to the performance of a Tobin tax as a policy intended to foster coordination success (chapter 1), and the adequacy of the use of a Tobin tax in order to reduce an economy’s vulnerability to sudden stops (chapter 2). Then, it analyzes players’ incentive to acquire costly information in a sequential decision setting (chapter 3). In chapter 1, a continuum of foreign agents decide whether to enter or not in an investment project. A fraction λ of them are hit by liquidity restrictions in a second period and are forced to withdraw early investment or precluded from investing in the interim period, depending on the actions they chose in the first period. Players not affected by the liquidity shock are able to revise early decisions. Coordination success is increasing in the aggregate investment and decreasing in the aggregate volume of capital exit. Without liquidity shocks, aggregate investment is (in a pivotal contingency) invariant to frictions like a tax on short term capitals. In this case, a Tobin tax always increases success incidence. In the presence of liquidity shocks, this invariance result no longer holds in equilibrium. A Tobin tax becomes harmful to aggregate investment, which may reduces success incidence if the economy does not benefit enough from avoiding capital reversals. It is shown that the Tobin tax that maximizes the ex-ante probability of successfully coordinated investment is decreasing in the liquidity shock. Chapter 2 studies the effects of a Tobin tax in the same setting of the global game model proposed in chapter 1, with the exception that the liquidity shock is considered stochastic, i.e, there is also aggregate uncertainty about the extension of the liquidity restrictions. It identifies conditions under which, in the unique equilibrium of the model with low probability of liquidity shocks but large dry-ups, a Tobin tax is welfare improving, helping agents to coordinate on the good outcome. The model provides a rationale for a Tobin tax on economies that are prone to sudden stops. The optimal Tobin tax tends to be larger when capital reversals are more harmful and when the fraction of agents hit by liquidity shocks is smaller. Chapter 3 focuses on information acquisition in a sequential decision game with payoff complementar- ity and information externality. When information is cheap relatively to players’ incentive to coordinate actions, only the first player chooses to process information; the second player learns about the true payoff distribution from the observation of the first player’s decision and follows her action. Miscoordination requires that both players privately precess information, which tends to happen when it is expensive and the prior knowledge about the distribution of the payoffs has a large variance.
Resumo:
This thesis argues on the possibility of supporting deictic gestures through handheld multi-touch devices in remote presentation scenarios. In [1], Clark distinguishes indicative techniques of placing-for and directing-to, where placing-for refers to placing a referent into the addressee’s attention, and directing-to refers to directing the addressee’s attention towards a referent. Keynote, PowerPoint, FuzeMeeting and others support placing-for efficiently with slide transitions, and animations, but support limited to none directing-to. The traditional “pointing feature” present in some presentation tools comes as a virtual laser pointer or mouse cursor. [12, 13] have shown that the mouse cursor and laser pointer offer very little informational expressiveness and do not do justice to human communicative gestures. In this project, a prototype application was implemented for the iPad in order to explore, develop, and test the concept of pointing in remote presentations. The prototype offers visualizing and navigating the slides as well as “pointing” and zooming. To further investigate the problem and possible solutions, a theoretical framework was designed representing the relationships between the presenter’s intention and gesture and the resulting visual effect (cursor) that enables the audience members to interpret the meaning of the effect and the presenter’s intention. Two studies were performed to investigate people’s appreciation of different ways of presenting remotely. An initial qualitative study was performed at The Hague, followed by an online quantitative user experiment. The results indicate that subjects found pointing to be helpful in understanding and concentrating, while the detached video feed of the presenter was considered to be distracting. The positive qualities of having the video feed were the emotion and social presence that it adds to the presentations. For a number of subjects, pointing displayed some of the same social and personal qualities [2] that video affords, while less intensified. The combination of pointing and video proved to be successful with 10-out-of-19 subjects scoring it the highest while pointing example came at a close 8-out-of-19. Video was the least preferred with only one subject preferring it. We suggest that the research performed here could provide a basis for future research and possibly be applied in a variety of distributed collaborative settings.
Resumo:
The present study investigated how the timing of the administration of estradiol benzoate (EB) impacted the synchronization of ovulation in fixed-time artificial insemination protocols of cattle. To accomplish this, two experiments were conducted, with EB injection occurring at different times: at withdrawal of the progesterone-releasing (N) intravaginal device or 24 h later. The effectiveness of these times was compared by examining ovarian follicular dynamics (Experiment 1, n = 30) and conception rates (Experiment 2, n = 504). In Experiment 1, follicular dynamics was performed in 30 Nelore cows (Bos indicus) allocated into two groups. on a random day of the estrous cycle (Day 0), both groups received 2 mg of EB i.m. and a P4-releasing intravaginal device, which was removed on Day 8, when 400 IU of eCG and 150 mu g of PGF were administered. The control group (G-EB9; n = 15) received 1 mg of EB on Day 9, while Group EB8 (G-EB8; n = 15) received the same dose a day earlier. Ovarian ultrasonographic evaluations were performed every 8 h after device removal until ovulation. The timing of EB administration (Day 8 compared with Day 9) did affect the interval between P4 device removal to ovulation (59.4 +/- 2.0 h compared with 69.3 +/- 1.7 h) and maximum diameter of dominant (1.54 +/- 0.06 a cm compared with 1.71 +/- 0.05 b cm, P = 0.03) and ovulatory (1.46 +/- 0.05 a cm compared with 1.58 +/- 0.04 b cm, P < 0.01) follicles. In Experiment 2,504 suckling cows received the same treatment described in Experiment 1, but insemination was performed as follows: Group EB8-AI48h (G-EB8-AI48h; n = 119) and Group EB8-AI54h (G-EB8-AI54h; n = 134) received 1 mg of EB on Day 8 and FrAI was performed, respectively, 48 or 54 h after P4 device removal. Group EB9-AI48h (G-EB9-AI48h; n = 126) and Group EB9-AI54h (G-EB9-AI54h n = 125) received the same treatments and underwent the same FTAI protocols as G-EB8-AI48h and G-EB8-AI54h, respectively; however, EB was administered on Day 9. Conception rates were greater (P < 0.05) in G-EB9-AI54h 163.2% (79/125) a], G-EB9-AI48h [58.7% (74/126) a] and G-EB8-AI48h [58.8% (70/119) a] than in G-EB8-AI54h [34.3% (46/134) b]. We concluded that when EB administration occurred at device withdrawal (D8), the interval to ovulation shortened and dominant and ovulatory follicle diameters decreased. Furthermore, when EB treatment was performed 24 h after device removal, FTAI conducted at either 48 or 54 h resulted in similar conception rates. However, EB treatment on the same day as device withdrawal resulted in a lesser conception rate when FTAI was conducted 54 h after device removal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing
Resumo:
The objective of this study is to describe the design and the implementation of an experimental set-up used to study the dynamics, the experimental identification, and the active vibration control of a flexible structure mounted manipulator system. The system consists of a three-degree-of-freedom cylindrical manipulator system with a flexible link on its tip. A two-degree-of-freedom polar rigid manipulator is mounted on the flexible macromanipulator. The dynamic modelling and experimental modal analysis identification in the frequency domain are being applied to design active digital control strategies for the micro-manipulator system to damp the mechanical vibrations of the flexible structure on the tip of the macro-manipulator system.
Resumo:
In the minimization of tool switches problem we seek a sequence to process a set of jobs so that the number of tool switches required is minimized. In this work different variations of a heuristic based on partial ordered job sequences are implemented and evaluated. All variations adopt a depth first strategy of the enumeration tree. The computational test results indicate that good results can be obtained by a variation which keeps the best three branches at each node of the enumeration tree, and randomly choose, among all active nodes, the next node to branch when backtracking.
Resumo:
Presents the dynamic modelling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory, which is used to discretize the displacements such that the small motion is represented in terms of nodal displacements. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.
Resumo:
This paper presents a 2kW single-phase high power factor boost rectifier with four cells in interleave connection, operating in critical conduction mode, and employing a soft-switching technique, controlled by Field Programmable Gate Array (FPGA). The soft-switching technique Is based on zero-current-switching (ZCS) cells, providing ZC (zero-current) turn-on and ZCZV (zero-current-zero-voltage) turn-off for the active switches, and ZV (zero-voltage) turn-on and ZC (zero-current) turn-off for the boost diodes. The disadvantages related 'to reverse recovery effects of boost diodes operated in continuous conduction mode (additional losses, and electromagnetic interference (EMI) problems) are minimized, due to the operation in critical conduction mode. In addition, due to the Interleaving technique, the rectifer's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) In the input current, in compliance with the TEC61000-3-2 standards. The digital controller has been developed using a hardware description language (VHDL) and implemented using a XC2S200E-SpartanII-E/Xilinx FPGA device, performing a true critical conduction operation mode for four interleaved cells, and a closed-loop to provide the output voltage regulation, like as a pre-regulator rectifier. Experimental results are presented for a 2kW implemented prototype with four interleaved cells, 400V nominal output voltage and 220V(rms) nominal input voltage, in order to verify the feasibility and performance of the proposed digital control through the use of a FPGA device.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The research trend for harvesting energy from the ambient vibration sources has moved from using a linear resonant generator to a non-linear generator in order to improve on the performance of a linear generator; for example, the relatively small bandwidth, intolerance to mistune and the suitability of the device for low-frequency applications. This article presents experimental results to illustrate the dynamic behaviour of a dual-mode non-linear energy-harvesting device operating in hardening and bi-stable modes under harmonic excitation. The device is able to change from one mode to another by altering the negative magnetic stiffness by adjusting the separation gap between the magnets and the iron core. Results for the device operating in both modes are presented. They show that there is a larger bandwidth for the device operating in the hardening mode compared to the equivalent linear device. However, the maximum power transfer theory is less applicable for the hardening mode due to occurrence of the maximum power at different frequencies, which depends on the non-linearity and the damping in the system. The results for the bi-stable mode show that the device is insensitive to a range of excitation frequencies depending upon the input level, damping and non-linearity.
Resumo:
This paper investigates the feasibility of using an energy harvesting device tuned such that its natural frequency coincides with higher harmonics of the input to capture energy from walking or running human motion more efficiently. The paper starts by reviewing the concept of a linear resonant generator for a tonal frequency input and then derives an expression for the power harvested for an input with several harmonics. The amount of power harvested is estimated numerically using measured data from human subjects. Assuming that the input is periodic, the signal is reconstructed using a Fourier series before being used in the simulation. It is found that although the power output depends on the input frequency, the choice of tuning the natural frequency of the device to coincide with a particular higher harmonic is restricted by the amount of damping that is needed to maximize the amount of power harvested, as well as to comply with the size limit of the device. It is also found that it is not feasible to tune the device to match the first few harmonics when the size of the device is small, because a large amount of damping is required to limit the motion of the mass.
Resumo:
This paper presents an experimental technique for structural health monitoring (SHM) based on Lamb waves approach in an aluminum plate using piezoelectric material as actuators and sensors. Lamb waves are a form of elastic perturbation that remains guided between two parallel free surfaces, such as the upper and lower surfaces of a plate, beam or shelf. Lamb waves are formed when the actuator excites the surface of the structure with a pulse after receiving a signal. Two PZTs were placed in the plate surface and one of them was used to send a predefined wave through the structure. Thus, the other PZT (adjacent) becomes the sensor. Using this methodology, this paper presents one case of damage detection considering the aluminum plate in the free-free-free-free boundary condition. The damage was simulated by adding additional mass on the plate. It is proposed two damage detection indexes obtained from the experimental signal, involving the Fast Fourier Transform (FFT) and the power spectral density (PSD) that were computed using the output signal. The results show the viability of the presented methodology to damage detection in smart structures
Resumo:
This paper is concerned with feedback vibration control of a lightly damped flexible structure that has a large number of well-separated modes. A single active electrical dynamic absorber is used to reduce a particular single vibration mode selectively or multiple modes simultaneously. The absorber is realized electrically by feeding back the structural acceleration at one position to a collocated piezoceramic patch actuator via a controller consisting of one or several second order lowpass filters. A simple analytical method is presented to design a modal control filter that is optimal in that it maximally flattens the mobility frequency response of the target mode, as well as robust in that it works within a prescribed maximum control spillover of 2 dB at all frequencies. Experiments are conducted with a free-free beam to demonstrate its ability to control any single mode optimally and robustly. It is also shown that an active absorber with multiple such filters can effectively control multiple modes simultaneously.