966 resultados para Flameless combustion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel ferrite powders with a nominal NiFe2O4 composition were synthesized by combustion reaction using urea as fuel. The powder was obtained using a vitreous silica basin heated directly on a hot plate at 480 degrees C until self-ignition occurred. After combustion, the powder was calcined at 700 degrees C for 2 h. The formation of the spinel phase and the distribution of cations in the tetrahedral and octahedral sites of the crystal structure were investigated by the Rietveld method, using synchrotron X-ray diffraction data and Mossbauer spectroscopy. The material presented a crystallite size of 120 nm and magnetic properties. The resulting stoichiometry after the Rietveld refinement was (Fe-0.989(2) Ni-0.011(2)) [Fe-1.012(2) Ni-0.989(2)] O-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconia-based ceramics that retain their metastable tetragonal phase at room temperature are widely studied due to their excellent mechanical and electrical properties. When these materials are prepared from precursor nanopowders with high specific surface areas, this phase is retained in dense ceramic bodies. In this work, we present a morphological study of nanocrystalline ZrO2-2.8 mol% Y2O3 powders synthesized by the gel-combustion method, using different organic fuels - alanine, glycine, lysine and citric acid - and calcined at temperatures ranging from 873 to 1173 K. The nanopore structures were investigated by small-angle X-ray scattering. The experimental results indicate that nanopores in samples prepared with alanine, glycine and lysine have an essentially single-mode volume distribution for calcination temperatures up to 1073 K, while those calcined at 1173 K exhibit a more complex and wider volume distribution. The volume-weighted average of the nanopore radii monotonically increases with increasing calcination temperature. The samples prepared with citric acid exhibit a size distribution much wider than the others. The Brunauer-Emmett-Teller technique was used to determine specific surface area and X-ray diffraction, environmental scanning electron microscopy and transmission electron microscopy were also employed for a complete characterization of the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass burning is an important primary and secondary source of aerosol particles. The presence of carbonaceous particles in the respirable size range makes the study of this fraction important in view of possible health and climatic effects. The annual burning of sugar cane plantations causes emission of huge amounts of pyrogenic particles. Aerosol samples were collected in Araraquara city, São Paulo state, Brazil, during the harvest season for fine and coarse particles and bulk; they were analysed by electron-probe microanalysis, including facilities for low-Z element determination (low-Z EPMA) and by energy-dispersive X-ray fluorescence (EDXRF), in order to investigate the elemental composition of individual particles and bulk samples, respectively. Numerical analysis of the EPMA results by hierarchical clustering shows high contributions of carbonaceous particles that can be distinguished mainly in two different types: biogenic and carbon-rich. Additionally, two significant contributions of aluminosilicate particles were identified: as rather pure aluminosilicates or mixed with carbonaceous species. The EDXRF results are compatible with those of aerosol particles in Amazon, which is nowadays one of the main sources of biogenic particles in the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the preparation of SrBi2Nb2O9 (SBN) directly by the combustion synthesis. Strontium nitrate, niobium ammonium oxalate (NH4H2[NbO-(C2O4)(3)].3H(2)O) and bismuth oxide were used as oxidant reactants and urea as fuel. The influence of the fuel was evaluated by the addition of different fuel amounts (50%, 100%, 200% and 300%), 100% being the stoichiometric proportion. The XRD patterns showed that the SBN perovskite crystallized as the majority phase. The as-synthesized stoichiometric powder presented a specific surface area of around 13 m(2)/g and a mean grain size of around 16 nm. Dilatometric measurements showed that the maximum sintering rate occurs at 1275degreesC. The determination of the ferroparaelectric transition showed a Curie temperature (T-c) of 429degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulsating combustion process has won interest in current research due to indications that its application in energy generation can offer several advantages, such as: fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with conventional techniques. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. The main conclusions were: a) the pulsating combustion process produces more uniform fuel/air profile than the non pulsating process, b) close to stoichiometric equivalence ratio the pulsating combustion process generates higher rates of NO x; c) the frequency has a strong influence in NO x emission, but the pressure amplitude has a weak influence; d) the presence of the acoustic field may change drastically the combustion gas emissions in diffusion flames, but in pre-mixed flames the influence is not as strong.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study has been conducted with the objective of investigating the effects of the flame structure in the combustion oscillation conditions into a laboratorial scale cylindrical chamber. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. To analyze the flame structure the image tomographic reconstruction process were used, and the resultant images were associated to the oscillatory conditions (frequency and amplitude) into the combustion chamber. The main conclusions were: 1) when the flame premixed condition increase, for example 60% of the total air flow rate is premixed with LPG, the region of intense energy released is close to burner exit and strong amplitudes of oscillation (close to 50 mbar) were obtained into the chamber; 2) for long flames, predominantly diffusive flames, just weak amplitudes were detected, in the spite of the speaker exiting the premixed flow; 3) when the energy is released distributed through the combustion chamber, the long flame acts like a baffle. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for petroleum has been rising rapidly due to increasing industrialization and modernization. This economic development has led to a huge demand for energy, most of which is derived from fossil fuel. However, the limited reserve of fossil fuel has led many researchers to look for alternative fuels which can be produced from renewable feedstock. Increasing fossil fuel prices have prompted the global oil industry to look at biodiesel, which is from renewable energy sources. Biodiesel is produced from animal fats and vegetable oils and has become more attractive because it is more environmentally friendly and is obtained from renewable sources. Glycerol is the main by-product of biodiesel production; about 10% of the weight of biodiesel is generated in glycerol. The large amount of glycerol generated may become an environmental problem, since it cannot be disposed of in the environment. In this paper, an attempt has been made to review the different approaches and techniques used to produce glycerol (hydrolysis, transesterification, refining crude glycerol). The world biodiesel/glycerol production and consumption market, the current world glycerin and glycerol prices as well as the news trends for the use of glycerol mainly in Brazil market are analyzed. The technological production and physicochemical properties of glycerol are described, as is the characterization of crude glycerol obtained from different seed oil feedstock. Finally, a simple way to use glycerol in large amounts is combustion, which is an advantageous method as it does not require any purification. However, the combustion process of crude glycerol is not easy and there are technological difficulties. The news and mainly research about the combustion of glycerol was also addressed in this review. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on the study of BaMgAl10O17:Eu2+ (BAM:Eu) nanophosphors prepared by a microwave-assisted combustion procedure and more especially on the polymer/BAM:Eu nanocomposite film suitable for optical devices such as solid-state-lighting. Powder presented a specific nanomorphology, highly friable and thus easily ground into fine particles. They were then homogeneously dispersed into a polymer solution (poly(N-vinylpyrrolidone) or PVP) to elaborate a polymer phosphor nanocomposite. The structural, morphological and optical features of the nanocomposite film have been studied and compared to those of a pristine PVP film and BAM:Eu powder. All the characterizations (XRD, SEM, SAXS, etc.) proved that the blue phosphor nanoparticles are well incorporated into the polymer nanocomposite film which exhibited the characteristic blue emission of Eu2+ under UV light excitation. Furthermore, the photostability of the polymer/phosphor nanocomposite film has been studied after exposure to accelerated artificial photoageing at wavelengths above 300 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)