933 resultados para Fiber materials
Resumo:
Adsorption has been considered as an efficient method for the treatment of dye effluents, but properdisposal of the spent adsorbents is still a challenge. This work attempts to provide a facile methodto reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II(OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washedwith acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that thecarbonization could be well achieved above 600◦C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000 ◦C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption–desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m2/g and 1.67 cm3/g for the sample carbonized at 800 ◦C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.
Resumo:
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Resumo:
Lemon myrtle, anise myrtle, and Tasmanian pepper leaf are commercial Australian native herbs with a high volatile or essential oil content. Packaging of the herbs in high- or low-density polyethylene (HDPE and LDPE) has proven to be ineffective in preventing a significant loss of volatile components on storage. This study investigates and compares the effectiveness of alternate high-barrier property packaging materials, namely, polyvinylidene chloride coated polyethylene terephthalate/casted polypropylene (PVDC coated PET/CPP) and polyethylene terephthalate/polyethylene terephthalate/aluminum foil/linear low-density polyethylene (PET/PET/Foil/LLDPE), in prevention of volatile compound loss from the three native herbs stored at ambient temperature for 6 months. Concentrations of major volatiles were monitored using gas chromatography?mass spectrometry (GC-MS) techniques. After 6 months of storage, the greatest loss of volatiles from lemon myrtle was observed in traditional LDPE packaging (87% loss) followed by storage in PVDC coated PET/CPP (58% loss) and PET/PET/Foil/LLDPE (loss of 23%). The volatile loss from anise myrtle and Tasmanian pepper leaf stored in PVDC coated PET/CPP and PET/PET/Foil/LLDPE packaging was <30%. This study clearly indicates the importance of selecting the correct packaging material to retain the quality of herbs with high volatile content.
Resumo:
Modifications of surface materials and their effects on cleanability have important impacts in many fields of activity. In this study the primary aim was to develop radiochemical methods suitable for evaluating cleanability in material research for different environments. Another aim was to investigate the effects of surface modifications on cleanabilitity and surface properties of plastics, ceramics, concrete materials and also their coatings in conditions simulating their typical environments. Several new 51Cr and 14C labelled soils were developed for testing situations. The new radiochemical methods developed were suitable for examining different surface materials and different soil types, providing quantitative information about the amount of soil on surfaces. They also take into account soil soaked into surfaces. The supporting methods colorimetric determination and ATP bioluminescence provided semi-quantitative results. The results from the radiochemical and supporting methods partly correlated with each other. From a material research point of view numerous new materials were evaluated. These included both laboratory-made model materials and commercial products. Increasing the amount of plasticizer decreased the cleanability of poly(vinyl chloride) (PVC) materials. Microstructured surfaces of plastics improved the cleanability of PVC from particle soils, whereas for oil soil microstructuring reduced the cleanability. In the case of glazed ceramic materials, coatings affected the cleanability. The roughness of surfaces correlated with cleanability from particle soils and the cleanability from oil soil correlated with the contact angles. Organic particle soil was removed more efficiently from TiO2-coated ceramic surfaces after UV-radiation than without UV treatment, whereas no effect was observed on the cleanability of oil soil. Coatings improved the cleanability of concrete flooring materials intended for use in animal houses.
Resumo:
The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In addition, the impact of plant phenolics on amino acid level was studied using tryptophan as a model compound to elucidate their role in preventing the formation of tryptophan oxidation products. A high-performance liquid chromatography (HPLC) method with ultraviolet and fluorescence detection (UV-FL) was developed that enabled fast investigation of formation of tryptophan derived oxidation products. Byproducts of oilseed processes such as rapeseed (Brassica rapa L.), camelina (Camelina sativa) and soy meal (Glycine max L.) as well as Scots pine bark (Pinus sylvestris) and several reference compounds were shown to act as antioxidants toward both protein and lipid oxidation in cooked pork meat patties. In meat, the antioxidant activity of camelina, rapeseed and soy meal were more pronounced when used in combination with a commercial rosemary extract (Rosmarinus officinalis). Berry phenolics such as black currant (Ribes nigrum) anthocyanins and raspberry (Rubus idaeus) ellagitannins showed potent antioxidant activity in corn oil-in-water emulsions toward lipid oxidation with and without β-lactoglobulin. The antioxidant effect was more pronounced in the presence of β-lactoglobulin. The berry phenolics also inhibited the oxidation of tryptophan and cysteine side chains of β-lactoglobulin. The results show that the amino acid side chains were oxidized prior the propagation of lipid oxidation, thereby inhibiting fatty acid scission. In addition, the concentration and color of black currant anthocyanins decreased during the oxidation. Oxidation of tryptophan was investigated in two different oxidation models with hydrogen peroxide (H2O2) and hexanal/FeCl2. Oxidation of tryptophan in both models resulted in oxidation products such as 3a-hydroxypyrroloindole-2-carboxylic acid, dioxindolylalanine, 5-hydroxy-tryptophan, kynurenine, N-formylkynurenine and β-oxindolylalanine. However, formation of tryptamine was only observed in tryptophan oxidized in the presence of H2O2. Pine bark phenolics, black currant anthocyanins, camelina meal phenolics as well as cranberry proanthocyanidins (Vaccinium oxycoccus) provided the best antioxidant effect toward tryptophan and its oxidation products when oxidized with H2O2. The tryptophan modifications formed upon hexanal/FeCl2 treatment were efficiently inhibited by camelina meal followed by rapeseed and soy meal. In contrast, phenolics from raspberry, black currant, and rowanberry (Sorbus aucuparia) acted as weak prooxidants. This thesis contributes to elucidating the effects of natural phenolic compounds as potential antioxidants in order to control and prevent protein and lipid oxidation reactions. Understanding the relationship between phenolic compounds and proteins as well as lipids could lead to the development of new, effective, and multifunctional antioxidant strategies that could be used in food, cosmetic and pharmaceutical applications.
Resumo:
"die Firmen-Werbung setztein"
Resumo:
Multicultural social policies were formulated in Australia during the 1970s in response to challenges that had arisen the wake of a large-scale immigration program. Given recent intensification and diversification of immigrant intakes, however, understandings of multiculturalism have been contested repeatedly while new social demands have been made of the policy. In this context, questions have been raised about the adequacy of multicultural ethical education in Australian schools. These concern not only the type of ethics taught, but also the emphasis placed on ethics per se. This study emerges out of this context to look at the utility of using purpose-written philosophical materials– specifically, immigration-themed materials written by advocates of philosophy for children – for development of ethical understanding in multicultural Australia.
Resumo:
Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.
Resumo:
Turfgrasses range from extremely salt sensitive to highly salt tolerant. However, the selection of a salt tolerant turf is not a 'silver bullet' solution to successful turf growth on salt-affected parklands. Interactions between factors such as cultivar, construction practices, establishment, and maintenance can be complex and should not be considered in isolation of one another. Taking this holistic approach, a study investigating cultivar evaluation for salt-affected sites also included a comparison of topsoil materials as turf underlay, as well as pre-treatment of the sod. The turf species and cultivars used in the study were: Cynodon dactylon, cultivar 'Oz Tuff (I) '; Paspalum vaginatum, cultivars 'Sea Isle 1 (I) ' and 'Velvetene (I) '; Zoysia matrella cultivar 'A-1 (I) '; and Zoysia japonica, cultivar 'Empire (I) '. The two underlay materials were compost (100%) or a sandy clay topsoil each applied above a coastal sand profile to a depth of 10 cm. Rooting depth or root dry weight did not significantly differ among turf cultivars. Compost profile treatment had significantly greater root mass than the topsoil among all turf cultivars. This higher root production was reflected by improved quality of all turf at the final evaluation. Turfgrass grown on compost had a higher normalised difference vegetation index (NDVI), regardless of whether full sod or bare-rooted turfgrass was used. The use of a quality underlay was paramount to the successful growth of the turf cultivars investigated. While each cultivar had superior performance in sub-optimal conditions, the key to success was the selection of the right species and cultivar for each situation combined with proper establishment and maintenance of each turf grass.
Resumo:
The literature demonstrates that understanding relating to the use of materials in product design has been investigated from both engineering and design perspectives. However, none of these studies have explored the consumers’ concepts of the materials; rather they have focused on participants’ discussions of material samples. Consumers’ emotional reactions to the materials themselves or the consumers’ reaction to the durability of the materials have not been previously explored in depth. This research has investigated these issues and has found that consumers have very specific concepts about materials. Furthermore, the combinations of consumer concepts that are likely to elicit an emotional judgement by the consumer have also been identified. It was found that consumers are conscious of the durability of their products and the materials that they are made from. This knowledge contributes to the support of environmentally conscious design, as well as user-centered design knowledge and practice. An understanding of the emotion consumers attribute to the effect wear and aging had on the materials’ physical appearance has been achieved. This understanding of consumers’ emotional reactions to materials can contribute not only to design considerations but to knowledge regarding the promotion of prolonged product-user relationships.