993 resultados para Fiat Engineering, SPA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generating discriminative input features is a key requirement for achieving highly accurate classifiers. The process of generating features from raw data is known as feature engineering and it can take significant manual effort. In this paper we propose automated feature engineering to derive a suite of additional features from a given set of basic features with the aim of both improving classifier accuracy through discriminative features, and to assist data scientists through automation. Our implementation is specific to HTTP computer network traffic. To measure the effectiveness of our proposal, we compare the performance of a supervised machine learning classifier built with automated feature engineering versus one using human-guided features. The classifier addresses a problem in computer network security, namely the detection of HTTP tunnels. We use Bro to process network traffic into base features and then apply automated feature engineering to calculate a larger set of derived features. The derived features are calculated without favour to any base feature and include entropy, length and N-grams for all string features, and counts and averages over time for all numeric features. Feature selection is then used to find the most relevant subset of these features. Testing showed that both classifiers achieved a detection rate above 99.93% at a false positive rate below 0.01%. For our datasets, we conclude that automated feature engineering can provide the advantages of increasing classifier development speed and reducing development technical difficulties through the removal of manual feature engineering. These are achieved while also maintaining classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents a brief history of the development of ophthalmic biomaterials. Particularities in the development of ophthalmic biomaterials are discussed and some of their historic priorities within the general field of biomaterials are revealed or emphasized. The chapter then discusses the role and integration of ophthalmic biomaterials in tissue engineering and regenerative medicine applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO 2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2(1 1 0) surfaces exhibit ferromagnetic ordering. The investigation of surface-controlled magnetic particles will lead to significant progress in our fundamental understanding of functional aspects of magnetism on the nanoscale, facilitating rational design of nanomagnets. Moreover, we approved that the facet engineering pave the way on designing semiconductors possessing unique properties for novel energy applications, owing to that the bandgap and the electronic transport of the semiconductor can be tailored via exposed surface modulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that protein crystallizability can be influenced by site-directed mutagenesis of residues on the molecular surface of proteins, indicating that the intermolecular interactions in crystal-packing regions may play a crucial role in the structural regularity at atomic resolution of protein crystals. Here, a systematic examination was made of the improvement in the diffraction resolution of protein crystals on introducing a single mutation of a crystal-packing residue in order to provide more favourable packing interactions, using diphthine synthase from Pyrococcus horikoshii OT3 as a model system. All of a total of 21 designed mutants at 13 different crystal-packing residues yielded almost isomorphous crystals from the same crystallization conditions as those used for the wild-type crystals, which diffracted X-rays to 2.1 angstrom resolution. Of the 21 mutants, eight provided crystals with an improved resolution of 1.8 angstrom or better. Thus, it has been clarified that crystal quality can be improved by introducing a suitable single mutation of a crystal-packing residue. In the improved crystals, more intimate crystal-packing interactions than those in the wild-type crystal are observed. Notably, the mutants K49R and T146R yielded crystals with outstandingly improved resolutions of 1.5 and 1.6 angstrom, respectively, in which a large-scale rearrangement of packing interactions was unexpectedly observed despite the retention of the same isomorphous crystal form. In contrast, the mutants that provided results that were in good agreement with the designed putative structures tended to achieve only moderate improvements in resolution of up to 1.75 angstrom. These results suggest a difficulty in the rational prediction of highly effective mutations in crystal engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical technique is proposed for obtaining multiple excitation spots. Phase-matched counter propagating extended depth-of-focus fields were superimposed along the optical axis for generating multiple localized excitation spots. Moreover, the filtering effect due to the optical mask increases the lateral resolution. Proposed technique introduces the concept of simultaneous multiplane excitation and improves three-dimensional resolution. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design creativity involves developing novel and useful solutions to design problems The research in this article is an attempt to understand how novelty of a design resulting from a design process is related to the kind of outcomes. described here as constructs, involved in the design process A model of causality, the SAPPhIRE model, is used as the basis of the analysis The analysis is based on previous research that shows that designing involves development and exploration of the seven basic constructs of the SAPPhIRE model that constitute the causal connection between the various levels of abstraction at which a design can be described The constructs am state change, action, parts. phenomenon. input. organs. and effect The following two questions are asked. Is there a relationship between novelty and the constructs? If them is a relationship, what is the degree of this relationship? A hypothesis is developed to answer the questions an increase in the number and variety of ideas explored while designing should enhance the variety of concept space. leading to an increase in the novelty of the concept space Eight existing observational studies of designing sessions are used to empirically validate the hypothesis Each designing session involves an individual designer. experienced or novice. solving a design problem by producing concepts and following a think-aloud protocol. The results indicate dependence of novelty of concept space on variety of concept space and dependence of variety of concept space on variety of idea space. thereby validating the hypothesis The Jesuits also reveal a strong correlation between novelty and the constructs, correlation value decreases as the abstraction level of the constructs reduces. signifying the importance of using constructs at higher abstraction levels for enhancing novelty

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent time CFD tools have become increasingly useful in the engineering design studies especially in the area of aerospace vehicles. This is largely due to the advent of high speed computing platforms in addition to the development of new efficient algorithms. The algorithms based on kinetic schemes have been shown to be very robust and further meshless methods offer certain advantages over the other methods. Preliminary investigations of blood flow visualization through artery using CFD tool have shown encouraging results which further needs to be verified and validated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental data on average velocity and turbulence intensity generated by pitched blade downflow turbines (PTD) were presented in Part I of this paper. Part II presents the results of the simulation of flow generated by PTD The standard κ-ε model along with the boundary conditions developed in the Part 1 have been employed to predict the flow generated by PTD in cylindrical baffled vessel. This part describes the new software FIAT (Flow In Agitated Tanks) for the prediction of three dimensional flow in stirred tanks. The basis of this software has been described adequately. The influence of grid size, impeller boundary conditions and values of model parameters on the predicted flow have been analysed. The model predictions successfully reproduce the three dimensionality and the other essential characteristics of the flow. The model can be used to improve the overall understanding about the relative distribution of turbulence by PTD in the agitated tank

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the work that has been done in several laboratories and academic institutions in India in the area of wind engineering in the past 20–30 years has been reviewed. Studies on extreme and mean hourly winds, philosophies adopted in model studies in wind tunnels and some of the important results that have been obtained are described. Suggestions for future studies are indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen host guest compounds of 3,5-dihydroxybenzoic acid (DHBA) have been structurally characterized. Water molecules occupy the peripheries of a hexagonal void, created with DHBA molecules, and act as ``hooks'' to connect the guest molecules with the host-framework via hydrogen bonding. The ``water hook'' is an OH group acting as a donor. Consequently, the guest molecules were chosen so that they contain good hydrogen bond acceptor functionalities. A number of multicomponent hydrates were isolated with stoichiometries (DHBA)(x)(H2O). (guest),. Of these, compounds with the following as guests were obtained as crystals that were good enough for single crystal work: ethyl acetate (EtOAc), diethyl oxalate, dimethyl oxalate, di(n-propyl) oxalate, diethyl malonate, diethyl succinate, chloroacetonitrile, N,N-dimethyl formamide (DMF), acetone, dimethyl sulfoxide (DMSO), 1-propanol, and 2-butanol. From 2-butanol, a hemihydrate, (DHBA)(2)(H2O), was also obtained concomitantly. Further to guest stabilization, water acts as a good mediator of effective crystal packing and also determines the topology of the host framework. En the present series of compounds, the role of water is wide ranging, and it is not easy to classify it specifically as a host or as a guest.