953 resultados para FULL
Resumo:
Transglutaminases are a family of enzymes that catalyze the covalent cross-linking of proteins through the formation of $\varepsilon$-($\gamma$-glutaminyl)-lysyl isopeptide bonds. Tissue transglutaminase (Tgase) is an intracellular enzyme which is expressed in terminally differentiated and senescent cells and also in cells undergoing apoptotic cell death. To characterize this enzyme and examine its relationship with other members of the transglutaminase family, cDNAs, the first two exons of the gene and 2 kb of the 5$\sp\prime$ flanking region, including the promoter, were isolated. The full length Tgase transcript consists of 66 bp of 5$\sp\prime$-UTR (untranslated) sequence, an open reading frame which encodes 686 amino acids and 1400 bp of 3$\sp\prime$-UTR sequence. Alignment of the deduced Tgase protein sequence with that of other transglutaminases revealed regions of strong homology, particularly in the active site region.^ The Tgase cDNA was used to isolate and characterize a genomic clone encompassing the 5$\sp\prime$ end of the mouse Tgase gene. The transcription start site was defined using genomic and cDNA clones coupled with S1 protection analysis and anchored PCR. This clone includes 2.3 kb upstream of the transcription start site and two exons that contain the first 256 nucleotides of the mouse Tgase cDNA sequence. The exon intron boundaries have been mapped and compared with the exon intron boundaries of three members of the transglutaminase family: human factor XIIIa, the human keratinocyte transglutaminase and human erythrocyte band 4.1. Tissue Tgase exon II is similar to comparable exons of these genes. However, exon I bears no resemblance with any of the other transglutaminase amino terminus exons.^ Previous work in our laboratory has shown that the transcription of the Tgase gene is directly controlled by retinoic acid and retinoic acid receptors. To identify the region of the Tgase gene responsible for regulating its expression, fragments of the Tgase promoter and 5$\sp\prime$-flanking region were cloned into the chloramphenicol actetyl transferase (CAT) reporter constructs. Transient transfection experiments with these constructs demonstrated that the upstream region of Tgase is a functional promoter which contains a retinoid response element within a 1573 nucleotide region spanning nucleotides $-$252 to $-$1825. ^
Resumo:
During the European Iron Fertilisation Experiment (EIFEX), performed in the Southern Ocean, we investigated the reactions of different phytoplankton size classes to iron fertilization, applying measurements of size fractionated pigments, particulate organic matter, microscopy, and flow cytometry. Chlorophyll a (Chl a) concentrations at 20-m depth increased more than fivefold following fertilization through day 26, while concentrations of particulate organic carbon (POC), nitrogen (PON), and phosphorus (POP) roughly doubled through day 29. Concentrations of Chl a and particulate organic matter decreased toward the end of the experiment, indicating the demise of the iron-induced phytoplankton bloom. Despite a decrease in total diatom biomass at the end of the experiment, biogenic particulate silicate (bPSi) concentrations increased steadily due to a relative increase of heavily silicified diatoms. Although diatoms >10 µm were the main beneficiaries of iron fertilization, the growth of small diatoms (2-8 mm) was also enhanced, leading to a shift from a haptophyte- to a diatom-dominated community in this size fraction. The total biomass had lower than Redfield C : N, N : P, and C : P ratios but did not show significant trends after iron fertilization. This concealed various alterations in the elemental composition of the different size fractions. The microplankton (>20 µm) showed decreasing C : N and increasing N : P and C : P ratios, possibly caused by increased N uptake and the consumption of cellular P pools. The nanoplankton (2-20 µm) showed almost constant C : N and decreasing N : P and C : P ratios. Our results suggest that the latter is caused by a shift in composition of taxonomic groups.