904 resultados para FRESH-WATER SHRIMPS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fossil ostracods were investigated in five AMS14C-dated cores from different parts of the Laptev and Kara seas. Three cores from the Laptev Sea shelf are located in river paleovalleys, and one core originates from the western continental slope. The core from the Kara Sea was obtained in the eastern shelf region. Six fossil assemblages were distinguished: estuarine (1), inner-shelf (2), middle-shelf (3), outer-shelf (4), Pre-Holocene upper continental slope (5), and Holocene upper continental slope (6). They show that during the Postglacial sea-level rise there was a transition from estuarine brackish-water environment to modern marine conditions. Assemblages 1-3 are present in the eastern Laptev Sea with the oldest ostracod-bearing samples aging back to 11.4-11.3 cal.ka. Cores from the western Laptev Sea (12.3 cal.ka, assemblages 1-4) and the Kara Sea (8.1 cal.ka, assemblages 2-4) demonstrate similar pattern in assemblage replacement, but contain a number of relatively deep-water species reflecting stronger influence of open-sea waters. Core from the continental slope, water depth 270 m (~ 17 cal.ka) encompasses assemblages 5 and 6, which are absent in the shelf cores. Assemblage 5 stands out as a specific community dominated by relatively deep-water Arctic and North Atlantic species together with euryhaline ones. The assemblages indicate inflows of Atlantic-derived waters and downslope slides due to the proximity to the paleocoastline. Assemblage (6) is similar to the modern local ostracod assemblage at this site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pollen and organic-walled dinoflagellate cyst assemblages from core GeoB 9503-5 retrieved from the mud-belt ( 50 m water depth) off the Senegal River mouth have been analyzed to reconstruct short-term palaeoceanographic and palaeoenvironmental changes in subtropical NW Africa during the time interval from ca. 4200 to 1200 cal yr BP. Our study emphasizes significant coeval changes in continental and oceanic environments in and off Senegal and shows that initial dry conditions were followed by a strong and rapid increase in humidity between ca. 2900 and 2500 cal yr BP. After ca. 2500 cal yr BP, the environment slowly became drier again as indicated by slight increases in Sahelian savannah and desert elements in the pollen record. Around ca. 2200 cal yr BP, this relatively dry period ended with periodic pulses of high terrigenous contributions and strong fluctuations in fern spore and river plume dinoflagellate cyst percentages as well as in the fluxes of pollen, dinoflagellate cysts, fresh-water algae and plant cuticles, suggesting "episodic flash flood" events of the Senegal River. The driest phase developed after about 2100 cal yr BP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-resolution multi-proxy study of core MD99-2286 reveals a highly variable hydrographic environment in the Skagerrak from 9300 cal. yr BP to the present. The study includes foraminiferal faunas, stable isotopes and sedimentary parameters, as well as temperature and salinity reconstructions of a ca. 29 m long radiocarbon-dated core record. The multivariate technique fuzzy c-means was applied to the foraminiferal counts, and it was extremely valuable in defining subtle heterogeneities in the foraminiferal fauna data corresponding to hydrographic changes. The major mid-Holocene (Littorina) transgression, led to flooding of large former land areas in the North Sea, the opening of the English Channel and Danish straits and initiation of the modern circulation system. This is reflected by fluctuating C/N values and an explosive bloom of Hyalinea balthica. A slight indication of ameliorated conditions between 8000-5750 cal. yr BP is related to the Holocene Thermal Maximum. A subsequent increase in fresh water/Baltic water influence between 5750-4350 cal. yr BP is reflected by dominance of Bulimina marginata and depleted d18O-values. The Neoglacial cooling (after 4350 cal. yr BP) is seen in the Skagerrak as enhanced turbidity, increasing TOC-values and short-term changes in an overall Cassidulina laevigata dominated fauna suggesting a prevailing influence of Atlantic waters. This is in agreement with increased strength of westerly winds, as recorded for this period. The last 2000 years were also dominated by Atlantic Water conditions with generally abundant nutrient supply. However, during warm periods, particularly the Medieval Warm Period and the modern warming, the area was subject to a restriction in the supply of nutrients and/or the nutrient supply had a more refractory character.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Millennial-scale dry events in the Northern Hemisphere monsoon regions during the last Glacial period are commonly attributed to southward shifts of the Intertropical Convergence Zone (ITCZ) associated with an intensification of the northeasterly (NE) trade wind system during intervals of reduced Atlantic meridional overturning circulation (AMOC). Through the use of high-resolution last deglaciation pollen records from the continental slope off Senegal, our data show that one of the longest and most extreme droughts in the western Sahel history, which occurred during the North Atlantic Heinrich Stadial 1 (HS1), displayed a succession of three major phases. These phases progressed from an interval of maximum pollen representation of Saharan elements between ~19 and 17.4 kyr BP indicating the onset of aridity and intensified NE trade winds, followed by a millennial interlude of reduced input of Saharan pollen and increased input of Sahelian pollen, to a final phase between ~16.2 and 15 kyr BP that was characterized by a second maximum of Saharan pollen abundances. This change in the pollen assemblage indicates a mid-HS1 interlude of NE trade wind relaxation, occurring between two distinct trade wind maxima, along with an intensified mid-tropospheric African Easterly Jet (AEJ) indicating a substantial change in West African atmospheric processes. The pollen data thus suggest that although the NE trades have weakened, the Sahel drought remained severe during this time interval. Therefore, a simple strengthening of trade winds and a southward shift of the West African monsoon trough alone cannot fully explain millennial-scale Sahel droughts during periods of AMOC weakening. Instead, we suggest that an intensification of the AEJ is needed to explain the persistence of the drought during HS1. Simulations with the Community Climate System Model indicate that an intensified AEJ during periods of reduced AMOC affected the North African climate by enhancing moisture divergence over the West African realm, thereby extending the Sahel drought for about 4000 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-resolution diatom census coupled with other proxy data from Laurentian Fan (LF) provides a detailed description of the last deglaciation, bringing new insight to that period by revealing directly the timing of sea-ice formation and melting. Cold events Heinrich Event 1 (H1) and the Younger Dryas (YD) were multiphase events. H1 (~16.8-15.7 cal kyr BP) was defined by a two-pulse release of icebergs promoting sea-ice formation. Melting of sea-ice after H1 corresponds to a cold and fresh anomaly that may have kept the Bølling colder than the Allerød. At ~13.6 cal kyr BP, a cooling trend culminated with sea-ice formation, marking the YD onset (~12.8 cal kyr BP). The decrease in sea-ice (~12.2 cal kyr BP) led to a YD second phase characterized by very cold winters. However, the contribution of warm water diatoms tends to increase at the same time and the YD gradual end (~11.6 cal kyr BP) contrasts with its abrupt end in Greenland ice cores. The YD cannot be regarded as an event triggered by a fresh water input through the Laurentian Channel since only one weak brief input nearly 1000 yrs after its onset is recorded. Very cold and cool conditions without ice mark the following Preboreal. A northward heat flux between 10.8 and 10.2 cal kyr BP was interrupted by the increased influence of coastal waters likely fed by inland melting. There was no further development of sea-ice or ice-drift then.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution benthic foraminiferal and geochemical investigations were carried out across sapropels S5 and S6 from two sediment cores in the Levantine Sea to evaluate the impact of climatic and environmental changes on benthic ecosystems during times of sapropel formation. The faunal successions indicate that eutrophication and/or oxygen reduction started several thousand years prior to the onset of sapropel formation, suggesting an early response of the bathyal ecosystems to climatic changes. Severest oxygen depletions appear in the early phases of sapropel formation. The initial reduction of deep-water ventilation is caused by a warming and fresh water-induced stratification of Eastern Mediterranean surface waters. During the late phase of S5 formation improved oxygenation is restricted to middle bathyal ecosystems, indicating that at least some formation of subsurface water took place. During S6 formation oxygen depletions and eutrophication were less severe and more variable than during S5 formation. Estimated oxygen contents were low dysoxic at middle bathyal to anoxic at lower bathyal depths during the early phase of S6 formation but never dropped to anoxic values in its late phase. The high benthic ecosystem variability during S6 formation suggests that water column stratification at deep-water formation sites was in a very unstable mode and susceptible to minor temperature fluctuations at a millennial time-scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A total of 773 samples were analysed for dissolved manganese (Mn) in the Arctic Ocean aboard R.V. Polarstern during expedition ARK XXII/2 from 28 July until 07 October 2007 from Tromsø (Norway) to Bremerhaven. Concentrations of Mn were elevated in the surface layer with concentrations of up to 6 nM over the deep Basins and over 20 nM in the Laptev Sea. The general distribution of Mn through the water column is consistent with previous studies, but there are differences in the absolute concentrations that are most likely related to differences in sample area, sampling and filtration. The elevated concentrations of Mn in the surface layer are related to fresh water input. This was visible in the strong negative correlations observed between dissolved Mn and salinity. The correlation between Mn and salinity and the correlation between Mn and the quasi conservative trace water mass tracer PO4*, showed fluvial and melt water input and the Pacific and Atlantic origin of the surface waters. A large portion of the Mn delivered by the Arctic rivers is removed in the shelf seas and does not pass into the central basins. Most likely a benthic flux is at the origin of the elevated concentrations of Mn near the sediments in the Barents and Kara Seas. These elevated concentrations of Mn apparently affected the deep basins as well, as maxima in the concentrations of Mn were observed that corresponded with lowered transmission over the continental slope. A maximum in the concentration of Mn in the deep basin corresponded with anomalies in light transmission, potential temperature and dissolved iron, confirming the hydrothermal origin. The hydrothermal plume was observed throughout the Nansen Basin and over the deep Gakkel Ridge around 2500 m depth and a smaller plume was observed around 3200 m. The concentration of Mn at the Mn maximum around 2500 m depth decreased exponentially, consistent with a first order scavenging model. The concentrations of Mn were extremely low in the deep Makarov Basin (~0.05 nM) and slightly higher in the Eurasian Basin (~0.1 nM) outside the influence of the hydrothermal activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Antarctic Intermediate Water (AAIW) is a key player in global-scale oceanic overturning processes and an important conduit for heat, fresh water, and carbon transport. The AAIW past variability is poorly understood mainly due to the lack of sedimentary archives at intermediate water depths. We present records of benthic stable isotopes from sediments retrieved with the seafloor drill rig MARUM-MeBo at 956 m water depth off northern Chile (GeoB15016, 27°29.48'S, 71°07.58'W) that extend back to 970 ka. The sediments at this site are presently deposited at the boundary between AAIW and Pacific Deep Water (PDW). For previous peak interglacials, our results reveal similar benthic d13C values at site GeoB15016 and of a newly generated stack of benthic d13C from various deep Pacific cores representing the "average PDW." This suggests, unlike today, the absence of AAIW at the site and the presence of nearly pure PDW. In contrast, more positive d13C values at site GeoB15016 compared to the stack imply a considerable AAIW contribution during cold phases of interglacials and especially during glacials. Besides, we used three short sediment cores to reconstruct benthic d13C values from the AAIW core during the last glacial and found a d13C signature similar to today's. Assuming that this was the case also for the past 970 kyr, we demonstrate that sea level changes and latitudinal migrations of the AAIW formation site can only account for about 50% of the full range of past d13C increases at site GeoB15016 during cold periods. Other processes that could explain the remaining of the positive d13C anomalies are increases in glacial AAIW production and/or deeper convection of the AAIW with respect to preceding interglacials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The international Global Ocean Ecosystem Dynamics (GLOBEC) programme was initiated in 1991 by the Scientific Committee on Oceanic Research (SCOR) and the Intergovernmental Oceanographic Commission (IOC) of the UNESCO. It was a core project of the International Geosphere-Biosphere Project (IGBP) with its research topics aiming at understanding how global change impacts abundance, diversity and productivity of marine populations (Barange & Harris 2003). GLOBEC-Germany was the national German contribution to this core project focussing on the Baltic Sea and North Sea, to which Germany has adjoining coastlines. The two seas exhibit a gradient from marine (North Sea) to almost fresh water conditions (outer ends of the Baltic Sea). Main topic of the project was the investigation of interactions between zooplankton and fish under the influence of physical processes (Alheit 2004). Main sampling areas were located in the southern North Sea and German Bight, as well as in the Bornholm Basin in the Baltic Sea (Tamm et al. 2007).