946 resultados para FREQUENCY-RESPONSE MEASUREMENT
Resumo:
This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea-ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
Mesospheric temperature inversions are well established observed phenomena, yet their properties remain the subject of ongoing research. Comparisons between Rayleigh-scatter lidar temperature measurements obtained by the University of Western Ontario's Purple Crow Lidar (42.9°N, 81.4°W) and the Canadian Middle Atmosphere Model are used to quantify the statistics of inversions. In both model and measurements, inversions occur most frequently in the winter and exhibit an average amplitude of ∼10 K. The model exhibits virtually no inversions in the summer, while the measurements show a strongly reduced frequency of occurrence with an amplitude about half that in the winter. A simple theory of mesospheric inversions based on wave saturation is developed, with no adjustable parameters. It predicts that the environmental lapse rate must be less than half the adiabatic lapse rate for an inversion to form, and it predicts the ratio of the inversion amplitude and thickness as a function of environmental lapse rate. Comparison of this prediction to the actual amplitude/thickness ratio using the lidar measurements shows good agreement between theory and measurements.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
Atmospheric turbulence causes most weather-related aircraft incidents1. Commercial aircraft encounter moderate-or-greater turbulence tens of thousands of times each year worldwide, injuring probably hundreds of passengers (occasionally fatally), costing airlines tens of millions of dollars and causing structural damage to planes1, 2, 3. Clear-air turbulence is especially difficult to avoid, because it cannot be seen by pilots or detected by satellites or on-board radar4, 5. Clear-air turbulence is linked to atmospheric jet streams6, 7, which are projected to be strengthened by anthropogenic climate change8. However, the response of clear-air turbulence to projected climate change has not previously been studied. Here we show using climate model simulations that clear-air turbulence changes significantly within the transatlantic flight corridor when the concentration of carbon dioxide in the atmosphere is doubled. At cruise altitudes within 50–75° N and 10–60° W in winter, most clear-air turbulence measures show a 10–40% increase in the median strength of turbulence and a 40–170% increase in the frequency of occurrence of moderate-or-greater turbulence. Our results suggest that climate change will lead to bumpier transatlantic flights by the middle of this century. Journey times may lengthen and fuel consumption and emissions may increase. Aviation is partly responsible for changing the climate9, but our findings show for the first time how climate change could affect aviation.
Resumo:
Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.
Resumo:
By combining electrostatic measurements of lightning-induced electrostatic field changes with radio frequency lightning location, some field changes from exceptionally distant lightning events are apparent which are inconsistent with the usual inverse cube of distance. Furthermore, by using two measurement sites, a transition zone can be identified beyond which the electric field response reverses polarity. For these severe lightning events, we infer a horizontally extensive charge sheet above a thunderstorm, consistent with a mesospheric halo of several hundred kilometers’ extent.
Resumo:
We present an assessment of how tropical cyclone activity might change due to the influence of increased atmospheric carbon dioxide concentrations, using the UK’s High Resolution Global Environment Model (HiGEM) with N144 resolution (~90 km in the atmosphere and ~40 km in the ocean). Tropical cyclones are identified using a feature tracking algorithm applied to model output. Tropical cyclones from idealized 30-year 2×CO2 (2CO2) and 4×CO2 (4CO2) simulations are compared to those identified in a 150-year present-day simulation, which is separated into a 5-member ensemble of 30-year integrations. Tropical cyclones are shown to decrease in frequency globally by 9% in the 2CO2 and 26% in the 4CO2. Tropical cyclones only become more intese in the 4CO2, however uncoupled time slice experiments reveal an increase in intensity in the 2CO2. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity in the main development regions, is used to determine the response of tropical cyclone activity to increased atmospheric CO2. A weaker Walker circulation and a reduction in zonally averaged regions of updrafts lead to a shift in the location of tropical cyclones in the northern hemisphere. A decrease in mean ascent at 500 hPa contributes to the reduction of tropical cyclones in the 2CO2 in most basins. The larger reduction of tropical cyclones in the 4CO2 arises from further reduction of mean ascent at 500 hPa and a large enhancement of vertical wind shear, especially in the southern hemisphere, North Atlantic and North East Pacific.
Resumo:
To study the transient atmospheric response to midlatitude SST anomalies, a three-layer quasigeostrophic (QG) model coupled to a slab oceanic mixed layer in the North Atlantic is used. As diagnosed from a coupled run in perpetual winter conditions, the first two modes of SST variability are linked to the model North Atlantic Oscillation (NAO) and eastern Atlantic pattern (EAP), respectively, the dominant atmospheric modes in the Atlantic sector. The two SST anomaly patterns are then prescribed as fixed anomalous boundary conditions for the model atmosphere, and its transient responses are established from a large ensemble of simulations. In both cases, the tendency of the air–sea heat fluxes to damp the SST anomalies results in an anomalous diabatic heating of the atmosphere that, in turn, forces a baroclinic response, as predicted by linear theory. This initial response rapidly modifies the transient eddy activity and thus the convergence of eddy momentum and heat fluxes. The latter transforms the baroclinic response into a growing barotropic one that resembles the atmospheric mode that had created the SST anomaly in the coupled run and is thus associated with a positive feedback. The total adjustment time is as long as 3–4 months for the NAO-like response and 1–2 months for the EAP-like one. The positive feedback, in both cases, is dependent on the polarity of the SST anomaly, but is stronger in the NAO case, thereby contributing to its predominance at low frequency in the coupled system. However, the feedback is too weak to lead to an instability of the atmospheric modes and primarily results in an increase of their amplitude and persistence and a weakening of the heat flux damping of the SST anomaly.
Resumo:
Alkyl esters of p–hydroxybenzoic acid (parabens) are widely used as preservatives in personal care products, foods and pharmaceuticals. Their oestrogenic activity, their measurement in human breast tissue and their ability to drive proliferation of oestrogen-responsive human breast cancer cells has opened a debate on their potential to influence breast cancer development. Since proliferation is not the only hallmark of cancer cells, we have investigated the effects of exposure to parabens at concentrations of maximal proliferative response on migratory and invasive properties using three oestrogen-responsive human breast cancer cell lines (MCF-7, T-47-D, ZR-75-1). Cells were maintained short-term (1 week) or long-term (20±2 weeks) in phenol-red-free medium containing 5% charcoal-stripped serum with no addition, 10-8M 17-oestradiol, 1-5x10-4M methylparaben, 10-5M n-propylparaben or 10-5M n-butylparaben. Long-term exposure (20±2 weeks) of MCF-7 cells to methylparaben, n-propylparaben or n-butylparaben increased migration as measured using a scratch assay, time-lapse microscopy and xCELLigence technology: invasive properties were found to increase in matrix degradation assays and migration through matrigel on xCELLigence. Western immunoblotting showed an associated downregulation of E-cadherin and -catenin in the long-term paraben-exposed cells which could be consistent with a mechanism involving epithelial to mesenchymal transition. Increased migratory activity was demonstrated also in long-term paraben-exposed T-47-D and ZR-75-1 cells using a scratch assay and time-lapse microscopy. This is the first report that in vitro, parabens can influence not only proliferation but also migratory and invasive properties of human breast cancer cells.
Resumo:
Model studies do not agree on future changes in tropical cyclone (TC) activity on regional scales. We aim to shed further light on the distribution, frequency, intensity, and seasonality of TCs that society can expect at the end of the twenty-first century in the Southern hemisphere (SH). Therefore, we investigate TC changes simulated by the atmospheric model ECHAM5 with T213 (~60 km) horizontal resolution. We identify TCs in present-day (20C; 1969–1990) and future (21C; 2069–2100) time slice simulations, using a tracking algorithm based on vorticity at 850 hPa. In contrast to the Northern hemisphere (NH), where tropical storm numbers reduce by 6 %, there is a more dramatic 22 % reduction in the SH, mainly in the South Indian Ocean. While an increase of static stability in 21C may partly explain the reduction in tropical storm numbers, stabilization cannot alone explain the larger SH drop. Large-scale circulation changes associated with a weakening of the Tropical Walker Circulation are hypothesized to cause the strong decrease of cyclones in the South Indian Ocean. In contrast the decrease found over the South Pacific appears to be partly related to increased vertical wind shear, which is possibly associated with an enhanced meridional sea surface temperature gradient. We find the main difference between the hemispheres in changes of the tropical cyclones of intermediate strength with an increase in the NH and a decrease in the SH. In both hemispheres the frequency of the strongest storms increases and the frequency of the weakest storms decreases, although the increase in SH intense storms is marginal.
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to ‘pre-condition’ them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at two gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that three generations of high vpd-grown plants were better able to withstand periodic drought stress over two generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.
Resumo:
The resonance effect of microcrystalline cellulose/castor oil electrorheological (ER) suspensions was studied in a compressed oscillatory squeeze flow under external electric fields. The resonance frequency first increases linearly with increasing external held, and then shift to high-field plateau. The amplitudes of resonance peak increase sharply with the applied fields in the range of 0.17-1.67kV/mm. The phase difference of the reduced displacement relative to the excitation force inverses in the case of resonance. A viscoelasticity model of the ER suspensions, which offers both the equivalent stiffness and the viscous damping, should be responsible for the appearance of resonance. The influence of the electric field on the resonance frequency and the resonance hump is consistent qualitatively with the interpretation of our proposed model. Storage modulus G' was presented for the purpose of investigating this influence.
Resumo:
Transient responses of electrorheological fluids to square-wave electric fields in steady shear are investigated by computational simulation method. The structure responses of the fluids to the field with high frequency are found to be very similar to that to the field with very low frequency or the sudden applied direct current field. The stress rise processes are also similar in both cases and can be described by an exponential expression. The characteristic time tau of the stress response is found to decrease with the increase of the shear rate (gamma) over dot and the area fraction of the particles phi(2). The relation between them can be roughly expressed as tau proportional to(gamma) over dot(-3/4)phi(2)(-3/2). The simulation results are compared with experimental measurements. The aggregation kinetics of the particles in steady shear is also discussed according to these results.