939 resultados para FREQUENCY APPROACH
Resumo:
Assessment for Learning (AfL) is a title given to classroom evaluative practices that share the purpose of diagnosing and informing teachers and students about learning progress, during the learning process. These practices also have the potential to develop learner autonomy by increasing student motivation and mastery through developing the learner's capacity to monitor and plan his or her own learning progress. Yet teacher adoption of the practices is not a straightforward implementation of techniques within an existing classroom repertoire. Recent research highlights a more complex interrelationship between teacher and student beliefs, identities, and traditions of power within assessment and learning in classroom contexts. These often hidden relationships can add layers of complexity for teachers implementing assessment change, and may act as barriers that frustrate efforts to realise the AfL goal of learner autonomy. By interpreting AfL practices from a sociocultural perspective, the social and cultural contexts that influence classroom assessment can be better understood. In turn teachers can thus be better supported in adopting AfL practices within the complexities of the social, cultural and policy contexts of schooling.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
This research applies an archaeological lens to an inner-city master planned development in order to investigate the tension between the design of space and the use of space. The chosen case study for this thesis is Kelvin Grove Urban Village (KGUV), located in inner city Brisbane, Australia. The site of this urban village has strong links to the past. KGUV draws on both the history of the place in particular along with more general mythologies of village life in its design and subsequent marketing approaches. The design and marketing approach depends upon notions of an imagined past where life in a place shaped like a traditional village was better and more socially sustainable than modern urban spaces. The appropriation of this urban village concept has been criticised as a shallow marketing ploy. The translation and applicability of the urban village model across time and space is therefore contentious. KGUV was considered both in terms of its design and marketing and in terms of a reading of the actual use of this master planned place. Central to this analysis is the figure of the boundary and related themes of social heterogeneity, inclusion and exclusion. The refraction of history in the site is also an important theme. An interpretive archaeological approach was used overall as a novel method to derive this analysis.
Resumo:
Reflection Questions • How does the collaborative reading workshop approach engage students in higher order thinking and deep engagement with text? • How does the collaborative reading workshop approach support students to be active citizens and critically literate? • How does the interaction and collaborative thinking in this approach contribute to the students’ intellectual engagement and the teacher’s pedagogical rigor? • How could this approach be implemented or adapted at your school?
Resumo:
In recent years, cities show increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning human needs are supplied while natural resources are used in the most effective and sustainable manner. And the maintenance of ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, the paper briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, the paper defines the conceptual framework of a new method for developing sustainable urban ecosystems through ecological planning approach. In the future of the research, this model will be developed as a guideline for the assessment of the ecological sustainability in built environments.
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
Intuitively, any `bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distri- butions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
Resumo:
This paper proposes a novel Hybrid Clustering approach for XML documents (HCX) that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The empirical analysis reveals that the proposed method is scalable and accurate.
Resumo:
XML document clustering is essential for many document handling applications such as information storage, retrieval, integration and transformation. An XML clustering algorithm should process both the structural and the content information of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. This paper introduces a novel approach that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The proposed method reduces the high dimensionality of input data by using only the structure-constrained content. The empirical analysis reveals that the proposed method can effectively cluster even very large XML datasets and outperform other existing methods.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the most predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
In this paper, a fixed-switching-frequency closed-loop modulation of a voltage-source inverter (VSI), upon the digital implementation of the modulation process, is analyzed and characterized. The sampling frequency of the digital processor is considered as an integer multiple of the modulation switching frequency. An expression for the determination of the modulation design parameter is developed for smooth modulation at a fixed switching frequency. The variation of the sampling frequency, switching frequency, and modulation index has been analyzed for the determination of the switching condition under closed loop. It is shown that the switching condition determined based on the continuous-time analysis of the closed-loop modulation will ensure smooth modulation upon the digital implementation of the modulation process. However, the stability properties need to be tested prior to digital implementation as they get deteriorated at smaller sampling frequencies. The closed-loop modulation index needs to be considered maximum while determining the design parameters for smooth modulation. In particular, a detailed analysis has been carried out by varying the control gain in the sliding-mode control of a two-level VSI. The proposed analysis of the closed-loop modulation of the VSI has been verified for the operation of a distribution static compensator. The theoretical results are validated experimentally on both single- and three-phase systems.
Resumo:
Train scheduling is a complex and time consuming task of vital importance. To schedule trains more accurately and efficiently than permitted by current techniques a novel hybrid job shop approach has been proposed and implemented. Unique characteristics of train scheduling are first incorporated into a disjunctive graph model of train operations. A constructive algorithm that utilises this model is then developed. The constructive algorithm is a general procedure that constructs a schedule using insertion, backtracking and dynamic route selection mechanisms. It provides a significant search capability and is valid for any objective criteria. Simulated Annealing and Local Search meta-heuristic improvement algorithms are also adapted and extended. An important feature of these approaches is a new compound perturbation operator that consists of many unitary moves that allows trains to be shifted feasibly and more easily within the solution. A numerical investigation and case study is provided and demonstrates that high quality solutions are obtainable on real sized applications.
Resumo:
Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.
Resumo:
Purpose – The purpose of this paper is to propose and demonstrate the relevance of marketing systems, notably the process of product management and innovation, to urban development challenges. Design/methodology/approach – A macromarketing perspective is adopted to construe the city as a product and begin the application of the innovation process to urban management, following the steps commonly proposed for successful innovation in product management. An example of the application of the initial new product development steps of idea generation and opportunity identification is presented. Findings – The innovation process provides guidelines and checkpoints that enable corporations to improve the success rate of their development initiatives. Cities, like corporations, need to innovate in order to maintain their image and functionality, to provide a myriad benefits to their stakeholders and, thereby, to survive and grow. The example here shows how the preliminary NPD steps of idea generation and opportunity identification enrich the process of identifying and analysing new industry opportunities for a city. Practical implications – By conceptualising the city as a multifaceted product, the disciplined planning and evaluation processes pertinent to NPD success become relevant and helpful to practitioners responsible for urban planning, urban development and change. Originality/value – The paper shows how pertinent concepts and processes from marketing can be effectively applied to urban planning and economic development initiatives.
Resumo:
This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.