998 resultados para FOREST SOILS
Resumo:
Conflicting opinions are recorded in the literature concerning the suitability of Amazon lands for sustainable agriculture following deforestation. This article has been written to shed light on this question by summarizing climate, landform, soil and vegetation features from the findings of a land resource study of the Brazilian state of Rondônia in south-west Amazonia. The work, which followed the World Soils and Terrain Digital Database (SOTER) methodology, was financed by the World Bank. During the course of the survey special emphasis was given to studying soils; 2914 profiles were analyzed and recorded. The study identified a complex pattern of land units with clear differences in climate, landform, soils and native vegetation. Forested areas mosaic with lesser areas of natural savannas. The latter occur on both poorly-drained and well-drained, albeit nutrient deficient sandy soils. The tallest and most vigorous forests or their remnants were seen growing on well-drained soils formed from nutrient-rich parent materials. Many of these soils could, or are being used for productive agriculture. Soils developed on nutrient-poor parent materials support forests that are significantly lower in height, and would require large lime and fertilizer inputs for agriculture. Low forests with high palm populations and minor areas of wet land savannas cover the poorly drained soils. It is evident that forest clearing in the past was indiscriminant; this cannot be condoned. The diversity of land conditions found throughout Rondônia would suggest that many past studies in the Amazon have simply been too broad to identify significant soil differences.
Resumo:
Few studies have been conducted to verify how the structure of the forest affects the occurence and abundance of neotropical birds. Our research was undertaken between January 2002 and July 2004 at the Reserva Ducke, near Manaus (02º55',03º01'S; 59º53',59º59'W) in central Amazonia, to verify how the forest structure affects the occurrence and abundance of two bird species: the Plain-brown Woodcreeper Dendrocincla fuliginosa and the White-chinned Woodcreeper Dendrocincla merula. Bird species occurrence was recorded using lines of 20 mist-nets (one sample unit), along 51 1-km transects distributed along 9 pararel 8 km trails covering an area of 6400 ha. Along these transects, we placed 50 x 50m plots where we recorded forest structure components (tree abundance, canopy openness, leaf litter, standing dead trees, logs, proximity to streams, and altitude). We then related these variables to bird occurence and abundance using multiple logistic and multiple linear regression models, respectively. We found that D. fuliginosa frequently used plateau areas; being more abundant in areas with more trees. On the other hand, D. merula occurred more frequently and was more abundant in areas with low tree abundance. Our results suggest that although both species overlap in the reserve (both were recorded in at least 68% of the sampled sites), they differ in the way they use the forest microhabitats. Therefore, local variation in the forest structure may contribute to the coexistence of congeneric species and may help to maintain local alpha diversity.
Resumo:
This study analyzed the influence of forest structural components on the occurence, size and density of groups of Bare-face Tamarin (Saguinus bicolor) - the most threatened species in the Amazon - and produced the first map of distribution of groups in large-scale spatial within the area of continuous forest. Population censuses were conducted between November 2002 and July 2003, covering 6400 hectares in the Ducke Reserve, Manaus-AM, Brazil. Groups of S. bicolor were recorded 41 times accordingly distributed in the environments: plateau (20); slopes (12); and lowlands (09). The mean group size was 4.8 indiv./group, and ranged from 2 to 11 individuals. In the sites where the groups were recorded, and in an equivalent number of sites where no tamarins were found located at least 500 m from those where they had been recorded, we placed 50 m x 50 m plots to record the following forest structural components: abundance of trees; abundance of lianas; abundance of fruiting trees and lianas; abundance of snags; abundance of logs; percentage of canopy opening; leaf litter depth; and altitude. Bare-face Tamarin more often uses areas with lower abundance of forest logs, smaller canopy opening and with higher abundance of snags, areas in the forest with smaller canopy opening present higher density of S. bicolor groups. Apparently this species does not use the forest in a random way, and may select areas for its daily activities depending on the micro-environmental heterogeneity produced by the forest structural components.
Resumo:
Seasonally dry evergreen forests in southeast Pará, Brazil are transitional between taller closed forests of the interior Amazon Basin and woodland savannas (cerrados) of Brazil's south-central plains. We describe abiotic and biotic gradients in this region near the frontier town of Redenção where forest structure and composition grade subtly across barely undulating topography. Annual precipitation averaged 1859 mm between 1995-2001, with nearly zero rainfall during the dry season months of June August. Annual vertical migrations of deep-soil water caused by seasonal rainfall underlie edaphic and floristic differences between high- and low-ground terrain. Low-ground soils are hydromorphic, shaped by perching water tables during the wet season, pale gray, brown, or white in color, with coarse texture, low moisture retention during the dry season, and relatively high macro-nutrient status in the surface horizons. Forest canopies on low ground are highly irregular, especially along seasonal streams, while overstory community composition differs demonstrably from that on high ground. High-ground soils are dystrophic, well-drained through the wet season, brown or red-yellow in color, with finer texture, higher moisture retention, and low macro-nutrient status in the surface horizons compared to low-ground soils. Forest canopies are, on average, taller, more regular, and more closed on high ground. Low-ground areas can be envisioned as energy and nutrient sinks, where, because of hydrologic cycles, canopy disturbance likely occurs more frequently than at high-ground positions if not necessarily at larger scales.
Resumo:
The finding of a Neotropical river otter (Lontra longicaudis) cub occupying a shelter in a hollowed treetop is reported. The observation was made in a seasonally flooded forest in Central Amazonia, during the high water peak of the annual inundation cycle. A literature review indicates that this is the first description of a shelter of the species, both in a hollowed tree and in Amazonia. This observation can indicate a strong relationship between the species' breeding cycle with the annual dynamics of Amazonian rivers. We discuss potential advantages and disadvantages of breeding when water level is high.
Resumo:
This paper proposes the establishment of a second diameter measuring standard at 30cm shoot extension ('diam30') as input variable for allometric biomass estimation of small and mid-sized plant shoots. This diameter standard is better suited than the diameter at breast height (DBH, i.e. diameter at 1.30m shoot extension) for adequate characterization of plant dimensions in low bushy vegetation or in primary forest undergrowth. The relationships between both diameter standards are established based on a dataset of 8645 tree, liana and palm shoots in secondary and primary forests of central Amazonia (ranging from 1-150mm dbh). Dbh can be predicted from the diam(30) with high precision, the error introduced by diameter transformation is only 2-3% for trees and palms, and 5% for lianas. This is well acceptable for most field study purposes. Relationships deviate slightly from linearity and differ between growth forms. Relationships were markedly similar for different vegetation types (low secondary regrowth vs. primary forests), soils, and selected genera or species. This points to a general validity and applicability of diameter transformations for other field studies. This study provides researchers with a tool for the allometric estimation of biomass in low or structurally heterogeneous vegetation. Rather than applying a uniform diameter standard, the measuring position which best represents the respective plant can be decided on shoot-by-shoot. Plant diameters measured at 30cm height can be transformed to dbh for subsequent allometric biomass estimation. We recommend the use of these diameter transformations only for plants extending well beyond the theoretical minimum shoot length (i.e., >2m height). This study also prepares the ground for the comparability and compatability of future allometric equations specifically developed for small- to mid-sized vegetation components (i.e., bushes, undergrowth) which are based on the diam(30) measuring standard.
Resumo:
Bioassays under laboratory conditions aiming to determine the larvicidal activity of Bacillus sphaericus were carried out on Anopheles darlingi and Culex quinquefasciatus. In order to estimate the toxicity through median lethal concentration (LC50) and the relative potency of the strains to B. sphaericus standard strain 2362, probit analysis was performed utilizing the POLO-PC program. The findings of LC50 pointed out high effectiveness on strains IB15 (0.040 ppm), IB19 and S1116 (0.048 ppm), IB16 (0.052 ppm) and S265 (0.057 ppm). Strain IB15 presented nearly 50% more potency than strain 2362 in bioassays conducted on A. darlingi. It was observed that IB16 and S1116 strains were the most powerful against C. quinquefasciatus, showing to be about 300-400% stronger than 2362 strain. The results show that laboratory conditioned evaluation can be an important way to select promising bacteria with entomopathogenic action on biolarvicides production for use on mosquitoes breeding sites.
Resumo:
Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations. We develop pooled and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned for 15 years. Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical forests. High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual paths (14%), suggests the method may provide substantial efficiencies when compared to traditional procedures. The best fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, and a and b are both species-specific parameters. Species-specific equations of the form Y=a(BA×H), where Y is biomass, BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well. Comparison with previously published equations indicated errors from -33% to +29% would have occurred using off-site relationships. We also present equations for stemwood, twigs, and foliage as biomass components.
Resumo:
A preliminary survey of the spider fauna in natural and artificial forest gap formations at Porto Urucu, a petroleum/natural gas production facility in the Urucu river basin, Coari, Amazonas, Brazil is presented. Sampling was conducted both occasionally and using a protocol composed of a suite of techniques: beating trays (32 samples), nocturnal manual samplings (48), sweeping nets (16), Winkler extractors (24), and pitfall traps (120). A total of 4201 spiders, belonging to 43 families and 393 morphospecies, were collected during the dry season, in July, 2003. Excluding the occasional samples, the observed richness was 357 species. In a performance test of seven species richness estimators, the Incidence Based Coverage Estimator (ICE) was the best fit estimator, with 639 estimated species. To evaluate differences in species richness associated with natural and artificial gaps, samples from between the center of the gaps up to 300 meters inside the adjacent forest matrix were compared through the inspection of the confidence intervals of individual-based rarefaction curves for each treatment. The observed species richness was significantly higher in natural gaps combined with adjacent forest than in the artificial gaps combined with adjacent forest. Moreover, a community similarity analysis between the fauna collected under both treatments demonstrated that there were considerable differences in species composition. The significantly higher abundance of Lycosidae in artificial gap forest is explained by the presence of herbaceous vegetation in the gaps themselves. Ctenidae was significantly more abundant in the natural gap forest, probable due to the increase of shelter availability provided by the fallen trees in the gaps themselves. Both families are identified as potential indicators of environmental change related to the establishment or recovery of artificial gaps in the study area.
Resumo:
The objective of this work was to assess the fine-root (≤ 2 mm diameter) production dynamics of two forest regrowths at different ages. Fine-root production was monitored by the ingrowth core method in one 18-year-old site (2 ha) and one 10-year-old site (0.5 ha), both localized in the Apeú region, Northern Pará State, Brazil. The sites were abandoned after successive shifting cultivation, beginning in 1940. Monthly production of live fine-root was similar between sites and was influenced by rainfall seasonality, with higher production during the dry season than the wet season for mass and length. However, mortality in terms of mass was higher in the 10-year-old site than in the 18-year-old site. The seasonality influenced mortality only in the 18-year old site following the pattern observed for live fine-root. The influence seasonal on mortality in terms of length was different between sites, with higher mortality during the wet season in the 10-year-old site and higher mortality during the dry season in the 18-year-old site. Specific root length was higher during the wet season and at the 10-year-old site. Fine-root production was not influenced by the chronosequence of the sites studied, probably fine-root production may have already stabilized in the sites or it depended more on climate and soil conditions. The production of fine-roots mass and length were indicators that generally showed the same pattern.
Resumo:
Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on CO2 emission in the central Amazon region. The ring insertion effect increased the soil emission about 13-20% for sandy and loamy soils during the firsts 4-7 hours, respectively. After rainfall events below 2 mm, the soil respiration did not change, but for rainfall greater than 3 mm, after 2 hours there was a decrease in soil temperature and respiration of about 10-34% for the loamy and sand soils, with emissions returning to normal after around 15-18 hours. The size of the measurement areas and the spatial distribution of soil respiration were better estimated using the Shuttle Radar Topographic Mission (SRTM) data. The Campina reserve is a mosaic of bare soil, stunted heath forest-SHF and tall heath forest-THF. The estimated total average CO2 emissions from the area was 3.08±0.8 µmol CO2 m-2 s-1. The Cuieiras reserve is another mosaic of plateau, slope, Campinarana and riparian forests and the total average emission from the area was 3.82±0.76 µmol CO2 m-2 s-1. We also found that the main control factor of the soil respiration was soil temperature, with 90% explained by regression analysis. Automated soil respiration datasets are a good tool to improve the technique and increase the reliability of measurements to allow a better understanding of all possible factors driven by soil respiration processes.
Resumo:
Construction of hydroelectric dams in tropical regions has been contributing significantly to forest fragmentation. Alterations at edges of forest fragments impact plant communities that suffer increases in tree damage and dead, and decreases in seedling recruitment. This study aimed to test the core-area model in a fragmented landscape caused by construction of a hydroelectric power plant in the Brazilian Amazon. We studied variations in forest structure between the margin and interiors of 17 islands of 8-100 hectares in the Tucuruí dam reservoir, in two plots (30 and >100m from the margin) per island. Mean tree density, basal area, seedling density and forest cover did not significantly differ between marginal and interior island plots. Also, no significant differences were found in liana density, dead tree or damage for margin and interior plots. The peculiar topographic conditions associated with the matrix habitat and shapes of the island seem to extend edge effects to the islands' centers independently of the island size, giving the interior similar physical microclimatic conditions as at the edges. We propose a protocol for assessing the ecological impacts of edge effects in fragments of natural habitat surrounded by induced (artificial) edges. The protocol involves three steps: (1) identification of focal taxa of particular conservation or management interest, (2) measurement of an "edge function" that describes the response of these taxa to induced edges, and (3) use of a "Core-Area Model" to extrapolate edge function parameters to existing or novel situations.
Resumo:
We evaluated diversity and distribution of fish species in two habitats: flooded forest and open water of lakes of Rio Negro. Each of four lakes within the Anavilhanas Archipelago was sampled three times from 2009-2010. Species diversity generally was higher in flooded forests and at night, according to correspondence analysis. Predators were most active at night, but showed no preference between the flooded forest and open water habitats. Omnivores, filter feeders, and detritivores were most active during the day.
Resumo:
Coupled carbon/climate models are predicting changes in Amazon carbon and water cycles for the near future, with conversion of forest into savanna-like vegetation. However, empirical data to support these models are still scarce for Amazon. Facing this scenario, we investigated whether conservation status and changes in rainfall regime have influenced the forest-savanna mosaic over 20 years, from 1986 to 2006, in a transitional area in Northern Amazonia. By applying a spectral linear mixture model to a Landsat-5-TM time series, we identified protected savanna enclaves within a strictly protected nature reserve (Maracá Ecological Station - MES) and non-protected forest islands at its outskirts and compared their areas among 1986/1994/2006. The protected savanna enclaves decreased 26% in the 20-years period at an average rate of 0.131 ha year-1, with a greater reduction rate observed during times of higher precipitation, whereas the non-protected forest islands remained stable throughout the period of study, balancing the encroachment of forests into the savanna during humid periods and savannization during reduced rainfall periods. Thus, keeping favorable climate conditions, the MES conservation status would continue to favor the forest encroachment upon savanna, while the non-protected outskirt areas would remain resilient to disturbance regimes. However, if the increases in the frequency of dry periods predicted by climate models for this region are confirmed, future changes in extension and directions of forest limits will be affected, disrupting ecological services as carbon storage and the maintenance of local biodiversity.
Resumo:
Natural disturbances in tropical forests modify the availability and quality of resources and alter the patterns of bird distribution. These environmental changes increase the metabolic rate and disrupt the redox balance promoting oxidative stress. This study aimed to compare the abundance of Willisornis poecilinotus between gaps and the understory of a forest with undisturbed canopy at Caxiuanã National Forest. The abundance was correlated with vegetation heights. The oxidative stress and the stress promoting factors were determined in both sites of sampling. We captured 81 specimens of W. poecilinotus. The number of captures was high in gaps. The specimens sampled at gaps showed high levels of oxidative stress. The biomarkers of oxidative stress were significantly correlated in gaps. The variability of oxidative stress and oxidative damage were explained only by site of sampling. These results suggest that gaps are stressors sites to W. poecilinotus, which probably can be due to an increase of metabolic rate to deal with new flight strategies of foraging and avoid predation