905 resultados para FORBIDDEN TRANSITIONS
Resumo:
Over the last decade in a growing number of countries there has emerged an interest in the experiences of young people leaving state care. This has included a limited amount of cross national comparison. This paper reports the bleak descriptive picture of poor outcomes and lack of support that has emerged
but cautions that this be recognised as primarily expressing an Anglo-American descriptive empirical engagement with the issue. It then goes on to argue for using Esping-Anderson’s three types of welfare regime and the European Union policy goal of social inclusion as starting points to develop a more dynamic, systemic international picture of care leaving.
Resumo:
Many governments world-wide are promoting longer working life due to the social and economic repercussions of demographic change. However, not all workers are equally able to extend their employment careers. Thus, while national policies raise the overall level of labour market participation, they might create new social and labour market inequalities. This paper explores how institutional differences in the United Kingdom, Germany and Japan affect individual retirement decisions on the aggregate level, and variations in individuals’ degree of choice within and across countries. We investigate which groups of workers are disproportionately at risk of being ‘pushed’ out of employment, and how such inequalities have changed over time. We use comparable national longitudinal survey datasets focusing on the older population in England, Germany and Japan. Results point to cross-national differences in retirement transitions. Retirement transitions in Germany have occurred at an earlier age than in England and Japan. In Japan, the incidence of involuntary retirement is the lowest, reflecting an institutional context prescribing that employers provide employment until pension age, while Germany and England display substantial proportions of involuntary exits triggered by organisational-level redundancies, persistent early retirement plans or individual ill-health.
Resumo:
Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.
Resumo:
Aims. We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation.
Methods. The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation.
Results. Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive.
Conclusions. We believe that the present transition data are the best currently available.
Resumo:
The solid-fluid transition properties of the n - 6 Lennard-Jones system are studied by means of extensive free energy calculations. Different values of the parameter n which regulates the steepness of the short-range repulsive interaction are investigated. Furthermore, the free energies of the n < 12 systems are calculated using the n = 12 system as a reference. The method relies on a generalization of the multiple histogram method that combines independent canonical ensemble simulations performed with different Hamiltonians and computes the free energy difference between them. The phase behavior of the fullerene C60 solid is studied by performing NPT simulations using atomistic models which treat each carbon in the molecule as a separate interaction site with additional bond charges. In particular, the transition from an orientationally frozen phase at low temperatures to one where the molecules are freely rotating at higher temperatures is studied as a function of applied pressure. The adsorption of molecular hydrogen in the zeolite NaA is investigated by means of grand-canonical Monte Carlo, in a wide range of temperatures and imposed gas pressures, and results are compared with available experimental data. A potential model is used that comprises three main interactions: van der Waals, Coulomb and induced polarization by the permanent electric field in the zeolite.
Resumo:
Communication and cooperation between billions of neurons underlie the power of the brain. How do complex functions of the brain arise from its cellular constituents? How do groups of neurons self-organize into patterns of activity? These are crucial questions in neuroscience. In order to answer them, it is necessary to have solid theoretical understanding of how single neurons communicate at the microscopic level, and how cooperative activity emerges. In this thesis we aim to understand how complex collective phenomena can arise in a simple model of neuronal networks. We use a model with balanced excitation and inhibition and complex network architecture, and we develop analytical and numerical methods for describing its neuronal dynamics. We study how interaction between neurons generates various collective phenomena, such as spontaneous appearance of network oscillations and seizures, and early warnings of these transitions in neuronal networks. Within our model, we show that phase transitions separate various dynamical regimes, and we investigate the corresponding bifurcations and critical phenomena. It permits us to suggest a qualitative explanation of the Berger effect, and to investigate phenomena such as avalanches, band-pass filter, and stochastic resonance. The role of modular structure in the detection of weak signals is also discussed. Moreover, we find nonlinear excitations that can describe paroxysmal spikes observed in electroencephalograms from epileptic brains. It allows us to propose a method to predict epileptic seizures. Memory and learning are key functions of the brain. There are evidences that these processes result from dynamical changes in the structure of the brain. At the microscopic level, synaptic connections are plastic and are modified according to the dynamics of neurons. Thus, we generalize our cortical model to take into account synaptic plasticity and we show that the repertoire of dynamical regimes becomes richer. In particular, we find mixed-mode oscillations and a chaotic regime in neuronal network dynamics.
Resumo:
Individual eukaryotic microbes, such as the kinetoplastid parasite Trypanosoma brucei, have a defined size, shape, and form yet transition through life cycle stages, each having a distinct morphology. In questioning the structural processes involved in these transitions, we have identified a large calpain-like protein that contains numerous GM6 repeats (ClpGM6) involved in determining T. brucei cell shape, size, and form. ClpGM6 is a cytoskeletal protein located within the flagellum along the flagellar attachment zone (FAZ). Depletion of ClpGM6 in trypomastigote forms produces cells with long free flagella and a shorter FAZ, accompanied by repositioning of the basal body, the kinetoplast, Golgi, and flagellar pocket, reflecting an epimastigote-like morphology. Hence, major changes in microbial cell form can be achieved by simple modulation of one or a few proteins via coordinated association and positioning of membrane and cytoskeletal components.
Resumo:
There are no exact boundaries of what constitutes Central Europe, but it is nevertheless very evident as a zone of interloping forces stretching across Europe. The result has been negotiated, conflictual and contested processes defining an essentially virtual, discursive, yet also actually existing, space of ‘Central Europe’. Yet, and this is the particular message of this collection of essays, ‘transition’ has not merely been a process ‘on the ground’ as object of investigation and discussion, but has also affected the observers, especially academic commentators and analysts – both within Central Europe, but also outside. This includes a growing interaction between discussions and analyses ‘inside’ and ‘outside’ Central Europe on the phenomenon of ‘transition’. The result has been mutual learning processes and changes of ways of looking at things and interpreting them. The book is divided into two parts, roughly reflecting the two key research questions.The first part (A) is devoted to transitions in regional science. Part B focuses on changes in variety of territorial structures and developmentissues caused by Central-European transitions and which are resulting in differential pathways of regional development in the region.
Resumo:
The income support programs are created with the purpose of fighting both, the poverty trap and the inactivity trap. The balance between both is fragile and hard to find. Thus, the goal of this work is to contribute to solve this issue by finding how income support programs, particularly the Portuguese RSI, affect transitions to employment. This is made through duration analysis, namely using Cox and Competing Risks models. A particular feature is introduced in this work as it incorporates the possibility of Defective Risks. The estimated hazard elasticity with respect to the amount of RSI received for individuals who move to employment is -0,41. More than a half of RSI receivers stays for more than a year and the probability of never leaving to employment is 44%. The results appear to indicate that RSI has affected negatively transitions to employment.
Resumo:
The absorption spectrum of F2CSe in the 18800-21900 cm-1 region has been recorded at -770 C and 220 C under the conditions of medium resolution. The responsible electronic promotion is TI* + n excitation which leads to 3A2 and lA2 excited states. Progressions in vI', v2', v3" v4' and v4" have been identified in the spectrum and have been analyzed in terms of vibronic transitions between a planar ground state and a nQnplanar excited state. The - 3 - 1 - 1 - 1 origins of the a A2 + X Al and A A2 + X Al systems were assigned to the bands at 19018 cm-l and 19689 cm-l . This has given a singlet-triplet splittl. n g lA2 - 3A2 P f 671 cm -1 The out-of-plane wagging levels were found to be anharmonic. 1 -1 Barrier heights of 2483 cm- and 2923 cm were obtained for the lA2 and 3A2 upper states from a fitting of the energy levels of a Lorentzian-quadratic function to the observed levels in the out-of-plane wagging modes. 1 3 For the A2 and A2 states nonplanar equilibrium angles of 30.10 and 31.40 have been evaluated respectively. i