685 resultados para FILAMENTS
Resumo:
Bipolar elongation of filaments of the bacterial actin homolog ParM drives movement of newly replicated plasmid DNA to opposite poles of a bacterial cell. We used a combination of vitreous sectioning and electron cryotomography to study this DNA partitioning system directly in native, frozen cells. The diffraction patterns from overexpressed ParM bundles in electron cryotomographic reconstructions were used to unambiguously identify ParM filaments in Escherichia coli cells. Using a low-copy number plasmid encoding components required for partitioning, we observed small bundles of three to five intracellular ParM filaments that were situated close to the edge of the nucleoid. We propose that this may indicate the capture of plasmid DNA within the periphery of this loosely defined, chromosome-containing region.
Resumo:
Sublimation, the direct transition from solid to gas phase, is a process responsible for shaping and changing the reflectance properties of many Solar System surfaces. In this study, we have characterized the evolution of the structure/texture and of the visible and near-infrared (VIS–NIR) spectral reflectance of surfaces made of water ice mixed with analogues of complex extraterrestrial organic matter, named tholins, under low temperature (<-70° C) and pressure (10-⁵mbar) conditions. The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol, A. et al. [2015a]. Planet. Space Sci. 109–110, 106–122). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit made of a water-free porous (>90% porosity) network of organic filaments on top of the ice. The temporal evolution of the tholins and water ice spectral features (reflectance at the absorption bands wavelengths, red slope, from 0.40 to 1.90lm) are analyzed throughout the sublimation of the samples. We studied how different mixtures of tholins with water (0.1 wt.% tholins as coating or inclusions within the water particles), and different ice particle sizes (4.5 ± 2.5 or 67 ± 31lm) influence the morphological and spectral evolutions of the samples. The sublimation of the ice below the mantle produces a gas flow responsible for the ejection of mm to cm-sized fragments of the deposit in outbursts-like events. The results show remarkable differences between these samples in term of mantle structure, speed of mantle building, rates and surface area of mantle ejections. These data provide useful references for interpreting remote-sensing observations of icy Solar System surfaces, in particular the activity of comet nuclei where sublimation of organic-rich ices and deposition of organic-dust particles likely play a major role. Consequently, the data presented here could be of high interest for the interpretation of Rosetta, and also New Horizons, observations.
Resumo:
The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.
Resumo:
OBJECTIVE To determine a dexmedetomidine concentration, to be added to an alfaxalone-based bath solution, that will enhance the anaesthetic and analgesic effects of alfaxalone; and to compare the quality of anaesthesia and analgesia provided by immersion with either alfaxalone alone or alfaxalone with dexmedetomidine in oriental fire-bellied toads (Bombina orientalis). STUDY DESIGN Pilot study followed by a prospective, randomized, experimental trial. ANIMALS Fourteen oriental fire-bellied toads. METHODS The pilot study aimed to identify a useful dexmedetomidine concentration to be added to an anaesthetic bath containing 20 mg 100 mL(-1) alfaxalone. Thereafter, the toads were assigned to one of two groups, each comprising eight animals, to be administered either alfaxalone (group A) or alfaxalone-dexmedetomidine (group AD). After immersion for 20 minutes, the toads were removed from the anaesthetic bath and the righting, myotactic and nociceptive reflexes, cardiopulmonary variables and von Frey filaments threshold were measured at 5 minute intervals and compared statistically between groups. Side effects and complications were noted and recorded. RESULTS In the pilot study, a dexmedetomidine concentration of 0.3 mg 100 mL(-1) added to the alfaxalone-based solution resulted in surgical anaesthesia. The toads in group AD showed higher von Frey thresholds and lower nociceptive withdrawal reflex scores than those in group A. However, in group AD, surgical anaesthesia was observed in two out of eight toads only, and induction of anaesthesia was achieved in only 50% of the animals, as compared with 100% of the toads in group A. CONCLUSIONS AND CLINICAL RELEVANCE The addition of dexmedetomidine to an alfaxalone-based solution for immersion anaesthesia provided some analgesia in oriental fire-bellied toads, but failed to potentiate the level of unconsciousness and appeared to lighten the depth of anaesthesia. This limitation renders the combination unsuitable for anaesthetizing oriental fire-bellied toads for invasive procedures.
Resumo:
Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.
Resumo:
Five years (1979-1983) of Coastal Zone Color Scanner satellite ocean color data are used to examine seasonal patterns of phytoplankton pigment concentration along the Chilean coast from 20 degrees S to 45 degrees S. Four kilometer resolution, 2-4 day composites document the presence of filaments of elevated pigment concentration extending offshore throughout the study area, with maximum offshore extension at higher latitudes. In three years, 1979, 1981, and 1983, sufficient data exist in monthly composites to allow recreation of portions of the seasonal cycle. Data in 1979 are the most complete. Near-shore concentrations and cross-shelf extension of pigment concentrations in 1979 are maximum in austral winter throughout the study area and minimum in summer. Available data from 1981 and 1983 are consistent with this temporal pattern but with concentrations approximately double those of 1979. Seasonal, spatial patterns within 10 km of shore and 50 km offshore indicate a latitudinal discontinuity both in absolute concentration and in the magnitude of the seasonal cycle at approximately 33 degrees S in both 1979 and in the climatological time series. The discontinuity is strongest ill fall-winter and weakest in summer. South of this latitude, concentrations are relatively high (2-3 mg m(-3) in 1979), a strong seasonal cycle is present, and patterns 50 km offshore are correlated with those within 10 km of shore. North of 33 degrees S, concentrations are < 1.5 mg m(-3) (in 1979), and the seasonal cycle within 10 km of shore is present but much weaker and less obviously correlated with that 50 km offshore. The seasonal cycle of pigment concentrations is 180 degrees out of phase with monthly averaged upwelling favorable winds. Noncoincident Pathfinder sea surface temperature data show that over most latitudes, coastal low surface temperatures lag wind forcing by 1-2 months, but these too are out of phase with the pigment seasonal cycle. These data point to control of pigment patterns along the Chilean coast by the interaction of upwelling with circulation patterns unconnected to local wind forcing.
Resumo:
A little-known, but ecologically important non-geniculate coralline, Lithothamnion prolifer, is recorded from a number of tropical Indo-Pacific sites, including Fiji, Australia, Kiribati and Indonesia. The species occurs primarily on vertical walls of caves and overhangs in Fiji and Australia, but was also found as rhodoliths in Kiribati. Lithothamnion prolifer is characterized by the combination of characters which follow. The thallus is extremely glossy, smooth, and rosy coloured. Thalli usually produce complanate protuberances, but protuberances become terete when growing on well lit, horizontal substrata, when unattached, or when growing on loose substrata. Conceptacles occur mainly on the tips of protuberances, and tetra/bisporangial conceptacles are large (to 1300 mu m external diameter, with chambers up to 1100 mu m diameter). The tetra/bisporangial conceptacles are flush or only slightly raised, and often extensive and irregularly shaped (resembling small sori). They lack a raised rim, and have flattened pore plates. The rosette cells surrounding the tetra/bisporangial pore appear somewhat sunken below the surrounding roof cells in SEM, and the cells of filaments lining the pore canals of tetra/bisporangial conceptacles do not differ from the cells of filaments making up the rest of the roof. Old conceptacles persist and become buried in the thallus, and are then usually completely filled in by irregularly arranged calcified cells.
Resumo:
In the current model for bacterial cell division, the FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other essential division proteins such as FtsA and ZipA. The putative protein complex ultimately generates the division septum. The essential cell division protein FtsZ is a functional and structural homolog of eukaryotic tubulin, and like tubulin, FtsZ hydrolyzes GTP and self-assembles into protein filaments in a strictly GTP-dependent manner. FtsA shares sequence similarity with members of the ATPase superfamily that include actin, but its actual function remains unknown. To test the division model and elucidate functions of the division proteins, this dissertation primarily focuses on the analysis of FtsZ and FtsA in Escherichia coli. ^ By tagging with green fluorescent protein, we first demonstrated that FtsA also exhibits a ring-like structure at the potential division site. The localization of FtsA was dependent on functional FtsZ, suggesting that FtsA is recruited to the septum by the FtsZ ring. In support of this idea, we showed that FtsA and FtsZ directly interact. Using a novel E. coli in situ assay, we found that the FtsA-FtsZ interaction appears to be species-specific, although an interspecies interaction could occur between FtsA and FtsZ proteins from two closely related organisms. In addition, mutagenesis of FtsA revealed that no single domain is solely responsible for its septal localization or interaction with FtsZ. To explore the function of FtsA, we purified FtsA protein and demonstrated that it has ATPase activity. Furthermore, purified FtsA stimulates disassembly of FtsZ polymers in a sedimentation assay but does not affect GTP hydrolysis of FtsZ. This result suggests that in the cell, FtsA may function similarly in regulating dynamic instability of the FtsZ ring during the cell division process. ^ To elucidate the structure-function relationship of FtsZ, we carried out thorough genetic and functional analyses of the mutagenized FtsZ derivatives. Our results indicate that the conserved N-terminal domain of FtsZ is necessary and sufficient for FtsZ self-assembly and localization. Moreover, we discovered a critical role for an extreme C-terminal domain of FtsZ that consists of only 12 residues. Truncated FtsZ derivatives lacking this domain, though able to polymerize and localize, are defective in ring formation in vivo as well as interaction with FtsA and ZipA. Alanine scanning mutagenesis of this region pinpointed at least five residues necessary for the function of FtsZ. Studies of protein levels and protein-protein interactions suggested that these residues may be involved in regulating protein stability and/or FtsZ-FtsA interactions. Interestingly, two of the point mutants exhibited dominant-negative phenotypes. ^ In summary, results from this thesis work have provided additional support for the division machinery model and will contribute to a better understanding of the coordinate functions of FtsA and FtsZ in the cell division process. ^
Resumo:
Filamin is a high molecular weight (2 x 250,000) actin crosslinking protein found in a wide variety of cells and tissues. The most striking feature of filamin is its ability to crosslink F-actin filaments and cause ATP-independent gelation and contraction of F-actin solutions. The gelation of actin filaments by filamin involves binding to actin and crosslinking of the filaments by filamin self-association. In order to understand the role of filamin-actin interactions in the regulation of cytoskeletal assembly, two approaches were used. First, the structural relationship between self-association and actin-binding was examined using proteolytic fragments of filamin. Treatment of filamin with papain generated two major fragments, 90Kd and 180Kd. Upon incubation of the papain digest with F-actin and centrifugation at 100,000 x g, only the 180Kd fragment co-sedimented with F-actin. The binding of the 180Kd fragment, P180, was similar to native filamin in its sensitivity to ionic strength. Analytical gel filtration studies indicated that, unlike native filamin, P180 was monomeric and did not self-associate. Thermolysin treatment of P180 produced a 170Kd fragment, PT170, which no longer bound and co-sedimented with F-actin. These results suggested that filamin contained a discrete actin-binding domain. In order to locate the actin-binding domain, affinity purified antibodies to the papain and thermolysin sensitive regions of filamin were used in conjunction with filamin fragments generated by digestion with S. aureus V8 protease and elastase. The results indicated that the papain and thermolysin cleavage sites were close together, and, most likely, within 10Kd of one another. Taken together, these data suggest that filamin contains a discrete, internal actin-binding domain. The second approach was to use the non-crosslinking fragment P180 to develop a quantitative assay of filamin-actin binding. The binding of ('14)C-carboxyalkylated P180 was examined using the co-sedimentation assay. ('14)C-P180 binding to actin was equivalent to that of unlabelled P180 and exhibited comparable sensitivity of binding to changes in ionic strength. Within 5 min. of incubation the process had reached equilibrium. The specificity of binding was shown by the lack of binding of ('14)C-PT170. The binding of ('14)C-P180 was found to be a reversible and saturable process, with a K(,d) of 2 x 10('-7) M. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
Thoracic Aortic Aneurysms and Dissections (TAAD) are the fifteenth leading cause of death in the United States. About 15% of TAAD patients have family history of the disease. The most commonly mutated gene in these families is ACTA2, encoding smooth muscle-specific α-actin. ACTA2 missense mutations predispose individuals both to TAAD and to vascular occlusive disease of small, muscular arteries. Mice carrying an Acta2 R258C mutant transgene with a wildtype Acta2 promoter were generated and bred with Acta2-/- mice to decrease the wildtype: mutant Acta2 ratio. Acta2+/+ R258C TGmice have decreased aortic contractility without aortic disease. Acta2+/- R258C TG mice, however, have significant aortic dilatations by 12 weeks of age and a hyperproliferative response to injury. We characterized smooth muscle cells (SMCs) from bothmouse models under the hypothesis that mutant α-actin has a dominant negative effect, leading to impaired contractile filament formation/stability, improper focal adhesion maturation and increased proliferation. Explanted aortic SMCs from Acta2+/+ R258C TG mice are differentiated - they form intact filaments, express higher levels of contractile markers compared to wildtype SMCs and have predominantly nuclear Myocardin-Related Transcription Factor A (MRTF-A) localization. However, ultracentrifugation assays showed large unpolymerized actin fractions, suggesting that the filaments are brittle. In contrast, Acta2+/- R258C TG SMCs are less well-differentiated, with pools of unpolymerized actin, more cytoplasmic MRTF-A and decreased contractile protein expression compared to wildtype cells. Ultracentrifugation assays after treating Acta2+/- R258C TGSMCs with phalloidin showed actin filament fractions, indicating that mutant α-actin can polymerize into filaments. Both Acta2+/+ R258C TGand Acta2+/- R258C TGSMCs have larger and more peripheral focal adhesions compared to wildtype SMCs. Rac1 was more activated in Acta2+/+ R258C TGSMCs; both Rac1 and RhoA were less activated in Acta2+/- R258C TG SMCs, and FAK was more activated in both transgenic SMC lines compared to wildtype. Proliferation in both cell lines was significantly increased compared to wildtype cells and could be partially attenuated by inhibition of FAK or PDGFRβ. These data support a dominant negative effect of the Acta2 R258C mutation on the SMC phenotype, with increasing phenotypic severity when wildtype: mutant α-actin levels are decreased.
Resumo:
Anthrax outbreaks in the United States and Europe and its potential use as a bioweapon have made Bacillus anthracis an interest of study. Anthrax infections are caused by the entry of B. anthracis spores into the host via the respiratory system, the gastrointestinal tract, cuts or wounds in the skin, and injection. Among these four forms, inhalational anthrax has the highest lethality rate and persistence of spores in the lungs of animals following pulmonary exposure has been noted for decades. However, details or mechanisms of spore persistence were not known. In this study, we investigated spore persistence in a mouse model. The results suggest that B. anthracis spores have special properties that promote persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence. Moreover, recent discoveries from our laboratory suggest that spores evolved a sophisticated mechanism to interact with the host complement system. The complement system is a crucial part of the host defense mechanism against foreign microorganisms. Knowledge of the specific interactions that occur between the complement system and B. anthracis was limited. Studies performed in our laboratory have suggested that spores of B. anthracis can target specific proteins, such as Factor H (fH) of the complement system. Spores of B. anthracis are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called Bacillus collagen-like protein of anthracis (BclA), which comprises a central collagen-like region and a globular C-terminal domain. BclA is the first point of contact with the innate system of an infected host. In this study, we investigated the molecular details of BclA-fH interaction with respect to the specific binding mechanism and the functional significance of this interaction in a murine model of anthrax infection. We hypothesized that the recruitment of fH to the spore surface by BclA limits the extent of complement activation and promotes pathogen survival and persistence in the infected host. Findings from this study are significant to understanding how to treat post-exposure prophylaxis and improve our knowledge of spores with the host immune system.
Resumo:
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^
Resumo:
A primary objective of Leg 175 was to investigate the upwelling history of the Benguela Current. Upwelling along the coast is found over the shelf in several well-established cells, as well as along the shelf-slope break, and extends over the 1000-m isobath. Streaming filaments along the coast also carry upwelled water off shore (Shannon, 1985). The upwelled nutrient-rich waters are sourced from the South Atlantic central water mass, which is a mixture of subtropical and subantarctic water masses. Below the central water mass lies Antarctic intermediate water (Shannon and Hunter, 1988, doi:10.2989/025776188784480735; Stramma and Peterson, 1989, doi:10.1175/1520-0485(1989)019<1440:GTITBC>2.0.CO;2). The upwelling system supports a robust marine community (Shannon and Pillar, 1986) where radiolarians are abundant (Bishop et al., 1978, doi:10.1016/0146-6291(78)90010-3). The endemic nature of radiolarians makes them useful in reconstructing the paleocirculation patterns. The biogeographic distribution of many species is limited by water-mass distribution. In a given geographic region, species may also have discrete depth habitats. However, their depth of occurrence can change worldwide because the depths of water masses vary with latitude (Boltovskoy, 1999). Consequently, species found at shallow depths at high latitudes (cold-water fauna) are observed deeper in the water column at lower latitudes. The low-latitude submergence of cold-water species broadens their distribution, resulting in species distributions that can cover multiple geographic regions (Kling, 1976, doi:10.1016/0011-7471(76)90880-9; Casey, doi:10.1016/0031-0182(89)90017-5; 1971; Boltovskoy, 1987, doi:10.1016/0377-8398(87)90014-4). Since radiolarian distribution is closely related to water-mass distribution and controlled by climatic conditions rather than geographic regions, similar assemblages characterize the equatorial, subtropical, transition, subpolar, and polar regions of ocean basins (Petrushevskaya, 1971a; Casey, 1989, doi:10.1016/0031-0182(89)90017-5; Boltovskoy, 1999). Numerous radiolarian species found in water masses in the Angola and Benguela Current systems have also been observed in plankton net samples, sediment traps, and surface-sediment studies in the Atlantic sector of the Southern Ocean, where they exhibited particular water-mass affinities (Abelmann, 1992a, doi:10.1007/BF00243107; Abelmann 1992b, doi:10.1007/BF00243108; Abelmann and Gowing, 1997, doi:10.1016/S0377-8398(96)00021-7). This report presents data on the radiolarian fauna recovered from Site 1082 sediments in the form of a survey of species reflecting the latitudinal migration of the Angola-Benguela Front and upwelling. The data constitute a time series of relative radiolarian abundances at very high resolution (every 20 cm) of the upper 12 m of Hole 1082A.
Resumo:
Chemoherm carbonates, as well as numerous other types of methane seep carbonates, were discovered in 2004 along the passive margin of the northern South China Sea. Lithologically, the carbonates are micritic containing peloids, clasts and clam fragments. Some are highly brecciated with aragonite layers of varying thicknesses lining fractures and voids. Dissolution and replacement is common. Mineralogically, the carbonates are dominated by high magnesium calcites (HMC) and aragonite. Some HMCs with MgCO3 contents of between 30-38 mol%-extreme-HMC, occur in association with minor amounts of dolomite. All of the carbonates are strongly depleted in d13C, with a range from -35.7 to -57.5 per mil PDB and enriched in d18O (+ 4.0 to + 5.3 per mil PDB). Abundant microbial rods and filaments were recognized within the carbonate matrix as well as aragonite cements, likely fossils of chemosynthetic microbes involved in carbonate formation. The microbial structures are intimately associated with mineral grains. Some carbonate mineral grains resemble microbes. The isotope characteristics, the fabrics, the microbial structure, and the mineralogies are diagnostic of carbonates derived from anaerobic oxidation of methane mediated by microbes. From the succession of HMCs, extreme-HMC, and dolomite in layered tubular carbonates, combined with the presence of microbial structure and diagenetic fabric, we suggest that extreme-HMC may eventually transform into dolomites. Our results add to the worldwide record of seep carbonates and establish for the first time the exact locations and seafloor morphology where such carbonates formed in the South China Sea. Characteristics of the complex fabric demonstrate how seep carbonates may be used as archives recording multiple fluid regimes, dissolution, and early transformation events.
Resumo:
Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.