965 resultados para FAMILY GENE
Resumo:
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.
Resumo:
The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method.
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Resumo:
We previously identified a gene cluster, epa (for enterocococcal polysaccharide antigen), involved in polysaccharide biosynthesis of Enterococcus faecalis and showed that disruption of epaB and epaE resulted in attenuation in translocation, biofilm formation, resistance to polymorphonuclear leukocyte (PMN) killing, and virulence in a mouse peritonitis model. Using five additional mutant disruptions in the 26-kb region between orfde2 and OG1RF_0163, we defined the epa locus as the area from epaA to epaR. Disruption of epaA, epaM, and epaN, like prior disruption of epaB and epaE, resulted in alteration in Epa polysaccharide content, more round cells versus oval cells with OG1RF, decreased biofilm formation, attenuation in a mouse peritonitis model, and resistance to lysis by the phage NPV-1 (known to lyse OG1RF), while mutants disrupted in orfde2 and OG1RF_163 (the epa locus flanking genes) behaved like OG1RF in those assays. Analysis of the purified Epa polysaccharide from OG1RF revealed the presence of rhamnose, glucose, galactose, GalNAc, and GlcNAc in this polysaccharide, while carbohydrate preparation from the epaB mutant did not contain rhamnose, suggesting that one or more of the glycosyl transferases encoded by the epaBCD operon are necessary to transfer rhamnose to the polysaccharide. In conclusion, the epa genes, uniformly present in E. faecalis strains and involved in biosynthesis of polysaccharide in OG1RF, are also important for OG1RF shape determination, biofilm formation, and NPV-1 replication/lysis, as well as for E. faecalis virulence in a mouse peritonitis model.
Resumo:
Human placental lactogen (hPL) and human growth hormone (hGH) comprise a multigene family that share $>$90% nucleic acid sequence homology including 500 bp of 5$\sp\prime$ flanking sequence. Despite these similarities, hGH is produced in the anterior pituitary while hPL is expressed in the placenta. For most genes studied to date, regulation of expression occurs by alterations at the level of transcriptional initiation. Nuclear proteins bind specific DNA sequences in the promoter to regulate gene expression. In this study, the hPL$\sb3$ promoter was analyzed for DNA sequences that contribute to its expression. The interaction between the hPL$\sb3$ promoter and nuclear proteins was examined using nuclear extracts from placental and non-placental cells.^ To identify regulatory elements in the promoter of the hPL$\sb3$ gene, 5$\sp\prime$ deletion mutants were constructed by cleaving 1200 bp of upstream sequence with various restriction enzymes. These DNA fragments were ligated 5$\sp\prime$ to a promoterless bacterial gene chloramphenicol acetyltransferase (CAT) and transfected into JEG-3 cells, a human placental choriocarcinoma cell line. The level of CAT activity reflects the ability of the promoter mutants to activate transcription. Deletion of the sequence between $-$142 bp and $-$129 bp, relative to the start of transcription, resulted in an 8-fold decrease in CAT activity. Nuclear proteins from JEG-3, HeLa, and HepG2 (human liver cells), formed specific binding complexes with this region of the hPL$\sb3$ promoter, as shown by gel mobility shift assay. The $-$142 bp to $-$129 bp region contains a sequence similar to that of a variant binding site for the transcription factor Sp1. Sp1-like proteins were identified by DNA binding assay, in the nuclear extracts of the three cell lines. A series of G nucleotides in the hPL$\sb3$ promoter regulatory region were identified by methylation interference assay to interact with the DNA-binding proteins and the pattern obtained is similar to that for other Sp1 binding sites that have been studied. This suggests that hPL$\sb3$ may be transcriptionally regulated by Sp1 or a Sp1-like transacting factor. ^
Resumo:
Expression of the differentiated skeletal muscle phenotype is a process that appears to occur in at least two stages. First, pluripotent stem cells become committed to the myogenic lineage. Although undifferentiated and capable of continued proliferation, determined myoblasts are restricted to a single developmental fate. Upon receiving the appropriate environmental signals, these determined myoblasts withdraw from the cell cycle, fuse to form multi-nucleated myotubes, and begin to express a battery of muscle-specific gene products that make up the functional and contractile apparatus of the muscle. This project is aimed at the identification and characterization of factors that control the determination and differentiation of myogenic cells. We have cloned a cDNA, called myogenin, that plays an important role in these processes. Myogenin is expressed exclusively in skeletal muscle in vivo and myogenic cell lines in vitro. Its expression is sharply upregulated during differentiation. When constitutively expressed in fibroblasts, myogenin converts these cells to the myogenic lineage. Transfected cells behave as myogenic tissue culture cells with respect to the genes they express, the way they respond to environmental cues, and are capable of fusing to form multinucleated myotubes. Sequence analysis showed that this cDNA has homology to a family of transcription factors in a region of 72 amino acids known as the basic helix-loop-helix motif. This domain appears to mediate binding to a DNA sequence element known as an E-box (CANNTG) essential for the activity of the enhancers of many muscle-specific genes.^ Analysis of myogenin in tissue culture cells showed that its expression is responsive to many of the environmental cues, such as the presence of growth factors and oncogenes, that modulate myogenesis. In an attempt to identify the cis- and trans-elements that control myogenin expression and thereby understand what factors are responsible for the establishment of the myogenic lineage, we have cloned the myogenin gene. After analysis of the gene structure, we constructed a series of reporter constructs from the 5$\prime$ upstream sequence of the myogenin gene to determine which cis-acting sequences might be important in myogenin regulation. We found that 184 nucleotides of the 5$\prime$ sequence was sufficient to direct high-level muscle-specific expression of the reporter gene. Two sequence elements present in the 184 fragment, an E-box and a MEF-2 site, have been shown previously to be important in muscle-specific transcription. Mutagenesis of these sites revealed that both sites are necessary for full activity of the myogenin promoter, and suggests that a complex hierarchy of transcription factors control myogenic differentiation. ^
Resumo:
Any functionally important mutation is embedded in an evolutionary matrix of other mutations. Cladistic analysis, based on this, is a method of investigating gene effects using a haplotype phylogeny to define a set of tests which localize causal mutations to branches of the phylogeny. Previous implementations of cladistic analysis have not addressed the issue of analyzing data from related individuals, though in human studies, family data are usually needed to obtain unambiguous haplotypes. In this study, a method of cladistic analysis is described in which haplotype effects are parameterized in a linear model which accounts for familial correlations. The method was used to study the effect of apolipoprotein (Apo) B gene variation on total-, LDL-, and HDL-cholesterol, triglyceride, and Apo B levels in 121 French families. Five polymorphisms defined Apo B haplotypes: the signal peptide Insertion/deletion, Bsp 1286I, XbaI, MspI, and EcoRI. Eleven haplotypes were found, and a haplotype phylogeny was constructed and used to define a set of tests of haplotype effects on lipid and apo B levels.^ This new method of cladistic analysis, the parametric method, found significant effects for single haplotypes for all variables. For HDL-cholesterol, 3 clusters of evolutionarily-related haplotypes affecting levels were found. Haplotype effects accounted for about 10% of the genetic variance of triglyceride and HDL-cholesterol levels. The results of the parametric method were compared to those of a method of cladistic analysis based on permutational testing. The permutational method detected fewer haplotype effects, even when modified to account for correlations within families. Simulation studies exploring these differences found evidence of systematic errors in the permutational method due to the process by which haplotype groups were selected for testing.^ The applicability of cladistic analysis to human data was shown. The parametric method is suggested as an improvement over the permutational method. This study has identified candidate haplotypes for sequence comparisons in order to locate the functional mutations in the Apo B gene which may influence plasma lipid levels. ^
Resumo:
A fundamental problem in developmental biology concerns the mechanisms involved in the establishment of the embryonic axis. We are studying Xenopus nuclear factor 7 (xnf7) which we believe to be involved in dorsal-ventral patterning in Xenopus laevis. Xnf7 is a maternal gene product that is retained in the cytoplasm during early embryogenesis until the mid-blastula transition (MBT) when it reenters the nuclei. It is a member of a novel zinc finger proteins, the B-box family, consisting mainly of transcription factors and protooncogenes.^ The xnf7 gene is reexpressed during embryogenesis at the gastrula-neurula stage of development, with its zygotic expression limited to the central nervous system (CNS). In this study we showed that there are two different cDNAs coding for xnf7, xnf7-O and xnf7-B. They differ by 39 amino acid changes scattered throughout the cDNA. The expression of both forms of xnf7 is limited primarily to the central nervous system (CNS) and dorsal axial structures during later stages of embryogenesis.^ In order to study the spatial and temporal regulation of the gene, we screened a Xenopus genomic library using part of xnf7 cDNA as a probe. A genomic clone corresponding to the xnf7-O type was isolated, its 5$\sp\prime$ putative regulatory region sequenced, and its transcriptional initiation site mapped. The putative promoter region contained binding sites for Sp1, E2F, USF, a Pu box and AP1. CAT/xnf7 fusion genes were constructed containing various 5$\sp\prime$ deleted regions of the xnf7 promoter linked to a CAT (Chloramphenicol Acetyl Transferase) reporter vector. These constructs were injected into Xenopus oocytes and embryos to study the regions of the xnf7 promoter responsible for basal, temporal and spatial regulation of the gene. The activity of the fusion genes was measured by the conversion of chloramphenicol to its acetylated forms, and the spatial distribution of the transcripts by whole mount in situ hybridization. We showed that the elements involved in basal regulation of xnf7 lie within 121 basepairs upstream of the transcriptional inititiation site. A DNase I footprint analysis performed using oocyte extract showed that a E2F and 2 Sp1 sites were protected. During development, the fusion genes were expressed following the MBT, in accordance with the timing of the endogenous xnf7 gene. Spatially, the expression of the fusion gene containing 421 basepairs of the promoter was localized to the dorsal region of the embryo in a pattern that was almost identical to that detected with the endogenous transcripts. Therefore, the elements involved in spatial and temporal regulation of the xnf7 gene during development were contained within 421 basepairs upstream of the transcriptional initiation site. Future work will further define the elements involved in the spatial and temporal regulation and the trans-factors that interact with them. ^
Resumo:
Transglutaminases are a family of calcium-dependent enzymes, that catalyze the covalent cross-linking of proteins by forming $\varepsilon(\gamma$-glutamyl)lysine isopeptide bonds. In order to investigate the molecular mechanisms regulating the expression of the tissue transglutaminase gene and to determine its biological functions, the goal of this research has been to clone and characterize the human tissue transglutaminase promoter. Thirteen clones of the tissue transglutaminase gene were obtained from the screening of a human placental genomic DNA library. A 1.74 Kb fragment derived from DNA located immediately upstream of the translation start site was subcloned and sequenced. Sequence analysis of this DNA fragment revealed that it contains a TATA box (TATAA), a CAAT box (GGACAAT), and a series of potential transcription factor binding sites and hormone response elements. Four regions of significant homology, a GC-rich region, a TG-rich region, an AG-rich region, and HR1, were identified by aligning 1.8 Kb of DNA flanking the human, mouse, and guinea pig tissue transglutaminase genes.^ To measure promoter activity, we subcloned the 1.74 Kb fragment of the tissue transglutaminase gene into a luciferase reporter vector to generate transglutaminase promoter/luciferase reporter constructs. Transfection experiments showed that this DNA segment includes a functional promoter with high constitutive activity. Deletion analysis revealed that the SP1 sites or corresponding sequences contribute to this activity. We investigated the role of DNA methylation in regulating the activity of the promoter and found that in vitro methylation of tissue transglutaminase promoter/luciferase reporter constructs suppressed their basal activity. Methylation of the promoter is inversely correlated with the expression of the tissue transglutaminase gene in vivo. These results suggest that DNA methylation may be one of the mechanisms regulating the expression of the gene. The tumor suppressor gene product p53 was also shown to inhibit the activity of the promoter, suggesting that induction of the tissue transglutaminase gene is not involved in the p53-dependent programmed cell death pathway. Although retinoids regulate the expression of the tissue transglutaminase gene in vivo, retinoid-inducible activity can not be identified in 3.7 Kb of DNA 5$\sp\prime$ to the tissue transglutaminase gene.^ The structure of the 5$\sp\prime$ end of the tissue transglutaminase gene was mapped. Alignment analysis of the human tissue transglutaminase gene with other human transglutaminases showed that tissue transglutaminase is the simplest member of transglutaminase superfamily. Transglutaminase genes show a conserved core of exons and introns but diverse N-terminuses and promoters. These observations suggest that key regulatory sequences and promoter elements have been appended upstream of the core transglutaminase gene to generate the diversity of regulated expression and regulated activity characteristic of the transglutaminase gene family. ^
Resumo:
Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that is the leading cause of inherited blindness worldwide. Characteristic features of the disease include night blindness, progressive loss of visual fields, and deposition of pigment on the retina in a bone spicule-like pattern. RP is marked by extreme genetic heterogeneity with at least 19 autosomal dominant, autosomal recessive and X-linked loci identified. RP10, which maps to chromosome 7q, was the fifth autosomal dominant RP locus identified, and accounts for the early-onset disease in two independent families. Extensive linkage and haplotype analyses have been performed in these two families which have allowed the assignment of the disease locus to a 5-cM region on chromosome 7q31.3. In collaboration with Dr. Eric Green (National Center for Human Genome Research, National Institutes of Health), a well-characterized physical map of the region was constructed which includes YAC, BAC and cosmid coverage. The entire RP10 critical region resides within a 9-Mb well-characterized YAC contig. These physical maps not only provided the resources to undertake the CAIGES (cDNA amplification for identification of genomic expressed sequences) procedure for identification of retinal candidate genes within the critical region, but also identified a number of candidate genes, including transducin-$\gamma$ and blue cone pigment genes. All candidate genes examined were excluded. In addition, a number of ESTs were mapped within the critical region. EST20241, which was isolated from an eye library, corresponded to the 3$\sp\prime$ region of the ADP-ribosylation factor (ARF) 5 gene. ARF5, with its role in vesicle transport and possible participation in the regulation of the visual transduction pathway, became an extremely interesting candidate gene. Using a primer walking approach, the entire 3.2 kb genomic sequence of the ARF5 gene was generated and developed intronic primers to screen for coding region mutations in affected family members. No mutations were found in the ARF5 gene, however, a number of additional ESTs have been mapped to the critical region, and, as the large-scale sequencing projects get underway, megabases of raw sequence data from the RP10 region are becoming available. These resources will hasten the isolation and characterization of the RP10 gene. ^
Resumo:
Tumor necrosis factor receptor p75/80 ((TNF-R p75/80) is a 75 kDa type 1 transmembrane protein expressed predominately on cells of hematopoietic lineage. TNF-R p75/80 belongs to the TNF receptor superfamily characterized by cysteine-rich extracellular regions composed of three to six disulfide-linked domains. In the present report, we have characterized, for the first time, the complete gene structure for human TNF-R p75/80 which spans approximately 43 kbp. The gene consists of 10 exons (ranging from 34 bp to 2.5 kbp) and 9 introns (343 bp to 19 kbp). Consensus elements for transcription factors involved in T cell development and activation were noted in the 5$\sp\prime$ flanking region including TCF-1, Ikaros, AP-1, CK-2, IL-6RE, ISRE, GAS, NF-$\kappa$B and SP1, as well as an unusually high GC content and CpG frequency that appears characteristic of some TNF-R family members. The unusual (GATA)$\sb{\rm n}$ and (GAA)(GGA) repeats found within intron 1 may prove useful for further genome analysis within the 1p36 chromosomal locus. The human TNF-R p75/80 gene structure will permit further assessment of its involvement in normal hematopoietic cell development and function, autoimmune disease, and non-random translocations in hematopoietic malignancies. The region 1.8 kb 5$\sp\prime$ of the ATG was able to drive luciferase expression when transfected into cell lines expressing TNF-R p75/80. Further characterization of the 5$\sp\prime$-regulatory region will aid in determining factors and signal transduction pathways involved in regulating TNF-R p75/80 expression. ^
Resumo:
Bacillus anthracis plasmid pXO1 carries genes for three anthrax toxin proteins, pag (protective antigen), cya (edema factor), and lef (lethal factor). Expression of the toxin genes is enhanced by two signals: CO$\sb2$/bicarbonate and temperature. The CO$\sb2$/bicarbonate effect requires the presence of pXO1. I hypothesized that pXO1 harbors a trans-acting regulatory gene(s) required for CO$\sb2$/bicarbonate-enhanced expression of the toxin genes. Characterization of such a gene(s) will lead to increased understanding of the mechanisms by which B. anthracis senses and responds to host environments.^ A regulatory gene (atxA) on pXO1 was identified. Transcription of all three toxin genes is decreased in an atxA-null mutant. There are two transcriptional start sites for pag. Transcription from the major site, P1, is enhanced in elevated CO$\sb2$. Only P1 transcripts are significantly decreased in the atxA mutant. Deletion analysis of the pag upstream region indicates that the 111-bp region upstream of the P1 site is sufficient for atxA-mediated increase of this transcript. The cya and lef genes each have one apparent transcriptional start site. The cya and lef transcripts are significantly decreased in the atxA mutant. The atxA mutant is avirulent in mice. The antibody response to all three toxin proteins is significantly decreased in atxA mutant-infected mice. These data suggest that the atxA gene product activates expression of the toxin genes and is essential for virulence.^ Since expression of the toxin genes is dependent on atxA, whether increased toxin gene expression in response to CO$\sb2$/bicarbonate and temperature is associated with increased atxA expression was investigated. I monitored steady state levels of atxA mRNA and AtxA protein in different growth conditions. The results indicate that expression of atxA is not influenced by CO$\sb2$/bicarbonate. Steady state levels of atxA mRNA and AtxA protein are higher at 37$\sp\circ$C than 28$\sp\circ$C. However, increased pag expression at high temperature can not be attributed directly to increased atxA expression.^ There is evidence that an additional factor(s) may be involved in regulation of pag. Expression of pag in strains overproducing AtxA is significantly decreased compared to the wildtype strain. A specific interaction of tagged-AtxA with the pag upstream DNA has not been demonstrated. Furthermore, four proteins in B. anthracis extract can be co-immunoprecipitated with tagged-AtxA. Amino-terminal sequence of one protein has been determined and found highly homologous to chaperonins of GroEL family. Studies are under way to determine if this GroEL-like protein interactions with AtxA and plays any role in atxA-mediated activation of toxin genes. ^
Resumo:
PAX6, a member of the paired-type homeobox gene family, is expressed in a partially and temporally restricted pattern in the developing central nervous system, and its mutation is responsible for human aniridia (AN) and mouse small eye (Sey). The objective of this study was to characterize the PAX6 gene regulation at the transcriptional level, and thereby gain a better understanding of the molecular basis of the dynamic expression pattern and the diversified function of the human PAX6 gene.^ Initially, we examined the transcriptional regulation of the PAX6 gene by transient transfection assays and identified multiple cis-regulatory elements that function differently in different cell lines. The transcriptional initiation site was identified by RNase protection and primer extension assays. Examination of the genomic DNA sequence indicated that the PAX6 promoter has a TATA like-box (ATATTTT) at $-$26 bp, and two CCAAT-boxes are located at positions $-$70 and $-$100 bp. A 38 bp ply (CA) sequence was located 992 bp upstream from the initiation site. Transient transfection assays in glioblastoma cells and leukemia cells indicate that a 92 bp region was required for basal level PAX6 promoter activity. Gel retardation assays showed that this 92 bp sequence can form four DNA-protein complexes which can be specifically competed by a 31-mer oligonucleotide containing a PAX6 TATA-like sequence or an adenovirus TATA box. The activation of the promoter is positively correlated with the expression of PAX6 transcripts in cells tested.^ Based on the results obtained from the in vitro transfection assays, we did further dissection assay and functional analysis in both cell-culture and transgenic mice. We found that a 5 kb upstream promoter sequence is required for the tissue specific expression in the forebrain region which is consistent with that of the endogenous PAX6 gene. A 267 bp cell-type specific repressor located within the 5 kb fragment was identified and shown to direct forebrain specific expression. The cell-type specific repressor element has been narrowed to a 30 bp region which contains a consensus E-box by in vitro transfection assays. The third regulatory element identified was contained in a 162 bp sequence (+167 to +328) which functions as a midbrain repressor, and it appeared to be required for establishing the normal expression pattern of the PAX6 gene. Finally, a highly conserved 216 bp sequence identified in intron 4 exhibited as a spinal cord specific enhancer. And this 216 bp cis-regulatory element can be used as a marker to trace the differentiation and migration of progenitor cells in the developing spinal cord. These studies show that the concerted action of multiple cis-acting regulatory elements located upstream and downstream of the transcription initiation site determines the tissue specific expression of PAX6 gene. ^
Resumo:
Recurrent airway obstruction is one of the most common airway diseases affecting mature horses. Increased bronchoalveolar mucus, neutrophil accumulation in airways, and airway obstruction are the main features of this disease. Mucociliary clearance is a key component of pulmonary defense mechanisms. Cilia are the motile part of this system and a complex linear array of dynein motors is responsible for their motility by moving along the microtubules in the axonemes of cilia and flagella. We previously detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. The gene encoding DNAH3 is located in the peak of the detected QTL and encodes a dynein subunit. Therefore, we analysed this gene as a positional and functional candidate gene for RAO. In a mutation analysis of all 62 exons we detected 53 new polymorphisms including 7 non-synonymous variants. We performed an association study using 38 polymorphisms in a cohort of 422 animals. However, after correction for multiple testing we did not detect a significant association of any of these polymorphisms with RAO (P>0.05). Therefore, it seems unlikely that variants at the DNAH3 gene are responsible for the RAO QTL in European Warmblood horses.
Resumo:
Approximately 350 base pairs (bp) of the mitochondrial 16S rRNA gene were used to study the phylogenetic relationships among 5 genera of the clawed lobster family Nephropidae (infraorder Astacidea), including Homarus, Homarinus, Metanephrops, Nephrops, and Nephropsis. Maximum-parsimony analysis, using a hermit crab, Pagurus pollicaris (infraorder Anomura), as an outgroup. produced a tree topology in which Homarus and Nephrops formed a well-supported clade that excluded Homarinus. The same tree topology was obtained from both neighbor-joining and maximum-likelihood analyses, Some morphological characters that appear synapomorphic for Nephrops and Metanephrops may be due to convergence rather than symplesiomorphy. The current taxonomy, therefore, does not reflect the phylogeny of this group as suggested by the molecular data. More molecular data and studies using homologous morphological characters me needed to reach a better understanding of the phylogenetic history of clawed lobsters.