928 resultados para Experimental Analysis of Behavior
Resumo:
Background: Chemoreception is a widespread mechanism that is involved in critical biologic processes, including individual and social behavior. The insect peripheral olfactory system comprises three major multigene families: the olfactory receptor (Or), the gustatory receptor (Gr), and the odorant-binding protein (OBP) families. Members of the latter family establish the first contact with the odorants, and thus constitute the first step in the chemosensory transduction pathway.Results: Comparative analysis of the OBP family in 12 Drosophila genomes allowed the identification of 595 genes that encode putative functional and nonfunctional members in extant species, with 43 gene gains and 28 gene losses (15 deletions and 13 pseudogenization events). The evolution of this family shows tandem gene duplication events, progressive divergence in DNA and amino acid sequence, and prevalence of pseudogenization events in external branches of the phylogenetic tree. We observed that the OBP arrangement in clusters is maintained across the Drosophila species and that purifying selection governs the evolution of the family; nevertheless, OBP genes differ in their functional constraints levels. Finally, we detect that the OBP repertoire evolves more rapidly in the specialist lineages of the Drosophila melanogaster group (D. sechellia and D. erecta) than in their closest generalists.Conclusion: Overall, the evolution of the OBP multigene family is consistent with the birth-and-death model. We also found that members of this family exhibit different functional constraints, which is indicative of some functional divergence, and that they might be involved in some of the specialization processes that occurred through the diversification of the Drosophila genus.
Resumo:
We present an analysis of the M-O chemical bonding in the binary oxides MgO, CaO, SrO, BaO, and Al2O3 based on ab initio wave functions. The model used to represent the local environment of a metal cation in the bulk oxide is an MO6 cluster which also includes the effect of the lattice Madelung potential. The analysis of the wave functions for these clusters leads to the conclusion that all the alkaline-earth oxides must be regarded as highly ionic oxides; however, the ionic character of the oxides decreases as one goes from MgO, almost perfectly ionic, to BaO. In Al2O3 the ionic character is further reduced; however, even in this case, the departure from the ideal, fully ionic, model of Al3+ is not exceptionally large. These conclusions are based on three measures, a decomposition of the Mq+-Oq- interaction energy, the number of electrons associated to the oxygen ions as obtained from a projection operator technique, and the analysis of the cation core-level binding energies. The increasing covalent character along the series MgO, CaO, SrO, and BaO is discussed in view of the existing theoretical models and experimental data.
Resumo:
In social Hymenoptera (ants, bees, and wasps), the number of males that mate with the same queen affects social and genetic organization of the colony. However, the selective forces leading to single mating in certain conditions and multiple mating in others remain enigmatic. In this study, I investigated whether queens of the wood ant Formica paralugubris adopting different dispersal strategies varied in their mating frequency (the number of males with whom they mated). The frequency of multiple mating was determined by using microsatellite markers to genotype the sperm stored in the spermatheca of queens, and the validity of this method was confirmed by analysing mother-offspring combinations obtained from experimental single-queen colonies. Dispersing queens, which may found new colonies, did not mate with more males than queens that stayed within polygynous colonies, where the presence of numerous reproductive individuals ensured a high level of genetic diversity. Hence, this study provides no support to the hypotheses that multiple mating is beneficial because it increases genetic variability within colonies. Most of the F. paralugubris queens mated with a single male, whatever their dispersal strategy and life history. Moreover, multiple mating had little effect on colony genetic structure: the effective mating frequency was 1.11 when calculated from within-brood relatedness, and 1.13 when calculated from the number of mates detected in the sperm. Hence, occasional multiple mating by F. paralugubris queens may have no adaptive significance.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
This paper describes methods to analyze the brain's electric fields recorded with multichannel Electroencephalogram (EEG) and demonstrates their implementation in the software CARTOOL. It focuses on the analysis of the spatial properties of these fields and on quantitative assessment of changes of field topographies across time, experimental conditions, or populations. Topographic analyses are advantageous because they are reference independents and thus render statistically unambiguous results. Neurophysiologically, differences in topography directly indicate changes in the configuration of the active neuronal sources in the brain. We describe global measures of field strength and field similarities, temporal segmentation based on topographic variations, topographic analysis in the frequency domain, topographic statistical analysis, and source imaging based on distributed inverse solutions. All analysis methods are implemented in a freely available academic software package called CARTOOL. Besides providing these analysis tools, CARTOOL is particularly designed to visualize the data and the analysis results using 3-dimensional display routines that allow rapid manipulation and animation of 3D images. CARTOOL therefore is a helpful tool for researchers as well as for clinicians to interpret multichannel EEG and evoked potentials in a global, comprehensive, and unambiguous way.
Resumo:
The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.
Resumo:
PURPOSE: Although the central role of the immune system for tumor prognosis is generally accepted, a single robust marker is not yet available. EXPERIMENTAL DESIGN: On the basis of receiver operating characteristic analyses, robust markers were identified from a 60-gene B cell-derived metagene and analyzed in gene expression profiles of 1,810 breast cancer; 1,056 non-small cell lung carcinoma (NSCLC); 513 colorectal; and 426 ovarian cancer patients. Protein and RNA levels were examined in paraffin-embedded tissue of 330 breast cancer patients. The cell types were identified with immunohistochemical costaining and confocal fluorescence microscopy. RESULTS: We identified immunoglobulin κ C (IGKC) which as a single marker is similarly predictive and prognostic as the entire B-cell metagene. IGKC was consistently associated with metastasis-free survival across different molecular subtypes in node-negative breast cancer (n = 965) and predicted response to anthracycline-based neoadjuvant chemotherapy (n = 845; P < 0.001). In addition, IGKC gene expression was prognostic in NSCLC and colorectal cancer. No association was observed in ovarian cancer. IGKC protein expression was significantly associated with survival in paraffin-embedded tissues of 330 breast cancer patients. Tumor-infiltrating plasma cells were identified as the source of IGKC expression. CONCLUSION: Our findings provide IGKC as a novel diagnostic marker for risk stratification in human cancer and support concepts to exploit the humoral immune response for anticancer therapy. It could be validated in several independent cohorts and carried out similarly well in RNA from fresh frozen as well as from paraffin tissue and on protein level by immunostaining.
Resumo:
The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.
Resumo:
This paper focused on four alternatives of analysis of experiments in square lattice as far as the estimation of variance components and some genetic parameters are concerned: 1) intra-block analysis with adjusted treatment and blocks within unadjusted repetitions; 2) lattice analysis as complete randomized blocks; 3) intrablock analysis with unadjusted treatment and blocks within adjusted repetitions; 4) lattice analysis as complete randomized blocks, by utilizing the adjusted means of treatments, obtained from the analysis with recovery of interblock information, having as mean square of the error the mean effective variance of this same analysis with recovery of inter-block information. For the four alternatives of analysis, the estimators and estimates were obtained for the variance components and heritability coefficients. The classification of material was also studied. The present study suggests that for each experiment and depending of the objectives of the analysis, one should observe which alternative of analysis is preferable, mainly in cases where a negative estimate is obtained for the variance component due to effects of blocks within adjusted repetitions.
Resumo:
This article studies alterations in the values, attitudes, and behaviors that emerged among U.S. citizens as a consequence of, and as a response to, the attacks of September 11, 2001. The study briefly examines the immediate reaction to the attack, before focusing on the collective reactions that characterized the behavior of the majority of the population between the events of 9/11 and the response to it in the form of intervention in Afghanistan. In studying this period an eight-phase sequential model (Botcharova, 2001) is used, where the initial phases center on the nation as the ingroup and the latter focus on the enemy who carried out the attack as the outgroup. The study is conducted from a psychosocial perspective and uses "social identity theory" (Tajfel & Turner, 1979, 1986) as the basic framework for interpreting and accounting for the collective reactions recorded. The main purpose of this paper is to show that the interpretation of these collective reactions is consistent with the postulates of social identity theory. The application of this theory provides a different and specific analysis of events. The study is based on data obtained from a variety of rigorous academic studies and opinion polls conducted in relation to the events of 9/11. In line with social identity theory, 9/11 had a marked impact on the importance attached by the majority of U.S. citizens to their identity as members of a nation. This in turn accentuated group differentiation and activated ingroup favoritism and outgroup discrimination (Tajfel & Turner, 1979, 1986). Ingroup favoritism strengthened group cohesion, feelings of solidarity, and identification with the most emblematic values of the U.S. nation, while outgroup discrimination induced U.S. citizens to conceive the enemy (al-Qaeda and its protectors) as the incarnation of evil, depersonalizing the group and venting their anger on it, and to give their backing to a military response, the eventual intervention in Afghanistan. Finally, and also in line with the postulates of social identity theory, as an alternative to the virtual bipolarization of the conflict (U.S. vs al-Qaeda), the activation of a higher level of identity in the ingroup is proposed, a group that includes the United States and the largest possible number of countries¿ including Islamic states¿in the search for a common, more legitimate and effective solution.
Resumo:
This article studies alterations in the values, attitudes, and behaviors that emerged among U.S. citizens as a consequence of, and as a response to, the attacks of September 11, 2001. The study briefly examines the immediate reaction to the attack, before focusing on the collective reactions that characterized the behavior of the majority of the population between the events of 9/11 and the response to it in the form of intervention in Afghanistan. In studying this period an eight-phase sequential model (Botcharova, 2001) is used, where the initial phases center on the nation as the ingroup and the latter focus on the enemy who carried out the attack as the outgroup. The study is conducted from a psychosocial perspective and uses "social identity theory" (Tajfel & Turner, 1979, 1986) as the basic framework for interpreting and accounting for the collective reactions recorded. The main purpose of this paper is to show that the interpretation of these collective reactions is consistent with the postulates of social identity theory. The application of this theory provides a different and specific analysis of events. The study is based on data obtained from a variety of rigorous academic studies and opinion polls conducted in relation to the events of 9/11. In line with social identity theory, 9/11 had a marked impact on the importance attached by the majority of U.S. citizens to their identity as members of a nation. This in turn accentuated group differentiation and activated ingroup favoritism and outgroup discrimination (Tajfel & Turner, 1979, 1986). Ingroup favoritism strengthened group cohesion, feelings of solidarity, and identification with the most emblematic values of the U.S. nation, while outgroup discrimination induced U.S. citizens to conceive the enemy (al-Qaeda and its protectors) as the incarnation of evil, depersonalizing the group and venting their anger on it, and to give their backing to a military response, the eventual intervention in Afghanistan. Finally, and also in line with the postulates of social identity theory, as an alternative to the virtual bipolarization of the conflict (U.S. vs al-Qaeda), the activation of a higher level of identity in the ingroup is proposed, a group that includes the United States and the largest possible number of countries¿ including Islamic states¿in the search for a common, more legitimate and effective solution.
Resumo:
Aim Structure of the Thesis In the first article, I focus on the context in which the Homo Economicus was constructed - i.e., the conception of economic actors as fully rational, informed, egocentric, and profit-maximizing. I argue that the Homo Economicus theory was developed in a specific societal context with specific (partly tacit) values and norms. These norms have implicitly influenced the behavior of economic actors and have framed the interpretation of the Homo Economicus. Different factors however have weakened this implicit influence of the broader societal values and norms on economic actors. The result is an unbridled interpretation and application of the values and norms of the Homo Economicus in the business environment, and perhaps also in the broader society. In the second article, I show that the morality of many economic actors relies on isomorphism, i.e., the attempt to fit into the group by adopting the moral norms surrounding them. In consequence, if the norms prevailing in a specific group or context (such as a specific region or a specific industry) change, it can be expected that actors with an 'isomorphism morality' will also adapt their ethical thinking and their behavior -for the 'better' or for the 'worse'. The article further describes the process through which corporations could emancipate from the ethical norms prevailing in the broader society, and therefore develop an institution with specific norms and values. These norms mainly rely on mainstream business theories praising the economic actor's self-interest and neglecting moral reasoning. Moreover, because of isomorphism morality, many economic actors have changed their perception of ethics, and have abandoned the values prevailing in the broader society in order to adopt those of the economic theory. Finally, isomorphism morality also implies that these economic actors will change their morality again if the institutional context changes. The third article highlights the role and responsibility of business scholars in promoting a systematic reflection and self-critique of the business system and develops alternative models to fill the moral void of the business institution and its inherent legitimacy crisis. Indeed, the current business institution relies on assumptions such as scientific neutrality and specialization, which seem at least partly challenged by two factors. First, self-fulfilling prophecy provides scholars with an important (even if sometimes undesired) normative influence over practical life. Second, the increasing complexity of today's (socio-political) world and interactions between the different elements constituting our society question the strong specialization of science. For instance, economic theories are not unrelated to psychology or sociology, and economic actors influence socio-political structures and processes, e.g., through lobbying (Dobbs, 2006; Rondinelli, 2002), or through marketing which changes not only the way we consume, but more generally tries to instill a specific lifestyle (Cova, 2004; M. K. Hogg & Michell, 1996; McCracken, 1988; Muniz & O'Guinn, 2001). In consequence, business scholars are key actors in shaping both tomorrow's economic world and its broader context. A greater awareness of this influence might be a first step toward an increased feeling of civic responsibility and accountability for the models and theories developed or taught in business schools.
Resumo:
Plant growth analysis presents difficulties related to statistical comparison of growth rates, and the analysis of variance of primary data could guide the interpretation of results. The objective of this work was to evaluate the analysis of variance of data from distinct harvests of an experiment, focusing especially on the homogeneity of variances and the choice of an adequate ANOVA model. Data from five experiments covering different crops and growth conditions were used. From the total number of variables, 19% were originally homoscedastic, 60% became homoscedastic after logarithmic transformation, and 21% remained heteroscedastic after transformation. Data transformation did not affect the F test in one experiment, whereas in the other experiments transformation modified the F test usually reducing the number of significant effects. Even when transformation has not altered the F test, mean comparisons led to divergent interpretations. The mixed ANOVA model, considering harvest as a random effect, reduced the number of significant effects of every factor which had the F test modified by this model. Examples illustrated that analysis of variance of primary variables provides a tool for identifying significant differences in growth rates. The analysis of variance imposes restrictions to experimental design thereby eliminating some advantages of the functional growth analysis.
Resumo:
Multiple Sclerosis is the most common non-traumatic cause of neurologicaldisability in young people. There is no cure yet, and until recently, few long-termtherapies existed. Interferon beta (IFNβ) was the first treatment, and remains the mostcommonly prescribed. One of the most significant problems of IFNβ therapy is theproduction of drug specific antibodies. Up to 45% of patients develop neutralizingantibodies (NAbs) to IFNβ products. The neutralizing antibody binds to the biologicalagent preventing its interaction with its receptor, inhibiting the biological action of theprotein, which abrogates the clinical efficacy of IFNβ treatment. Interferon-betamediates its response by binding to its high affinity cell surface receptor and initiatingthe JAK/STAT signalling cascade. In this project we have analyzed the IFNβ signalingpathway in macrophages when neutralizing antibodies are present. The response tothis pathway after IFNβ stimulation shows a transient oscillatory rhythm of STAT1phosphorylation, which varies as NAbs concentration increases. To improve ourunderstanding of that behavior, we extended an existing mathematical model based onnonlinear ordinary differential equations of JAK/STAT pathway by including IFN-NAbassociation and IFN-activation receptor. Combining our theoretical model withexperimental data we could study the role of neutralizing antibodies on the molecularresponse and determine its lifetime after cytokine stimulation.