981 resultados para Escherichia coli expression
Resumo:
This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure-sensitive and took up more PI than the parent strains with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure-sensitive, was unaffected in membrane resealing implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.
Resumo:
The mechanism of the Escherichia coli DNA T:G mismatch endonuclease (Vsr) has been investigated using oligodeoxynucleotides substituted, at the scissile phosphate, with isomeric phosphorothioates and a 3'-phosphorothiolate. Binding and kinetic data with the phosphorothioates/phosphorothiolate indicate that the two magnesium ions, which constitute essential co-factors, are required to stabilise the extra negative charge developed on the phosphate as the transition state is formed. Additionally one of the magnesium ions serves to activate the leaving group (the non-bridging 3'-oxygen atom of the scissile phosphate) during the hydrolysis reaction. Stereochemical analysis, using the R-p phosphorothioate isomer, indicates that Vsr carries out a hydrolytic reaction with inversion of stereochemistry at phosphorus, compatible with an in-line attack of water and a pentacovalent transition state with trigonal bipyramidal geometry. In conjunction with structures of Vsr bound to its products, these data allow the reconstruction of the enzyme-substrate complex and a comprehensive description of the hydrolysis mechanism. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Pharmacological levels of zinc oxide (ZnO) incorporated into the post-weaning piglet diet reduce the incidence of diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) K88. The mechanism for this is not understood. Here, Intestinal Porcine Epithelial Cells (IPEC) J2 were used as an in vitro model of the porcine intestine. ZnO reduced IPEC J2 viability at concentrations >= 200 mu M, and ETEC adhesion to the host cell was unaffected by ZnO. Characterisation of the metabolism of IPEC J2 cells and ETEC established the effects of ZnO treatment on the metabolic profile of both. Although 100 mu M ZnO did not inhibit growth of either host or pathogen in fully supplemented media, metabolic profiles were significantly altered. Glucose and mannose were essential energy sources for IPEC J2 cells in the presence of ZnO, as the ability to utilise other sources was compromised. The increase in specificity of requirements to support respiration in ETEC was more pronounced, in particular the need for cysteine as a nitrogen source. These findings indicate that ZnO impacts on both host cell and pathogen metabolism and may provide insight into the mechanism for diarrhoea reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Escherichia fergusonii has been associated with a wide variety of intestinal and extra-intestinal infections in both humans and animals but, despite strong circumstantial evidence, the degree to which the organism is responsible for the pathologies identified remains uncertain. Thirty isolates of E fergusonii collected between 2003 and 2004 were screened using an Escherichia coli virulence gene array to test for the presence of homologous virulence genes in E. fergusonii. The iss (increased serum survival) gene was present in 13/30 (43%) of the test strains and the prfB (P-related fimbriae regulatory) and ireA (siderophore receptor IreA) genes were also detected jointly in 3/30 (10%) strains. No known virulence genes were detected in 14/30 (47%) of strains. Following confirmatory PCR and sequence analysis, the E. fergusonii prfB, iss and ireA genes shared a high degree of sequence similarity to their counterparts in E. coli, and a particular resemblance was noted with the E. coli strain APEC O1 pathogenicity island. In tissue culture adherence assays, nine E. fergusonii isolates associated with HEp-2 cells with a 'localised adherence' or 'diffuse adherence' phenotype, and they proved to be moderately invasive. The E fergusonii isolates in this study possess both some phenotypic and genotypic features linked to known pathotypes of E coli, and support existing evidence that strains of E fergusonii may act as an opportunistic pathogens, although their specific virulence factors may need to be explored. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.
Resumo:
In cattle, the lymphoid rich regions of the rectal-anal mucosa at the terminal rectum are the preferred site for Escherichia coli O157:H7 colonisation. All cattle infected by rectal swab administration demonstrate long-term E. coli O157:H7 colonisation, whereas orally challenged cattle do not demonstrate long-term E. coli O157:H7 colonisation in all animals. Oral, but not rectal challenge of sheep with E. coli O157:H7 has been reported, but an exact site for colonisation in sheep is unknown. To determine if E. coli O157:H7 can effectively colonise the ovine terminal rectum, in vitro organ culture (IVOC) was initiated. Albeit sparsely, large, densely packed E. coli O157:H7 micro-colonies were observed on the mucosa of ovine and control bovine terminal rectum explants. After necropsy of orally inoculated lambs, bacterial enumeration of the proximal and distal gastrointestinal tract did suggest a preference for E. coli O157:H7 colonisation at the ovine terminal rectum, albeit for both lymphoid rich and non-lymphoid sites. As reported for cattle, rectal inoculation studies were then conducted to determine if all lambs would demonstrate persistent colonisation at the terminal rectum. After necropsy of E. coli O157:H7 rectally inoculated lambs, most animals were not colonised at gastrointestinal sites proximal to the rectum, however, large densely packed micro-colonies of E. coli O157:H7 were observed on the ovine terminal rectum mucosa. Nevertheless, at the end point of the study (day 14), only one lamb had E. coli O157:H7 micro-colonies associated with the terminal rectum mucosa. A comparison of E. coli O157:H7 shedding yielded a similar pattern of persistence between rectally and orally inoculated lambs. The inability of E. coli O157:H7 to effectively colonise the terminal rectum mucosa of all rectally inoculated sheep in the long term, suggests that E. coli O157:H7 may colonise this site, but less effectively than reported previously for cattle.
Resumo:
Recent surveys have shown that Escherichia coli O26 is prevalent in ruminants compared with E. coli O157. These serogroups share common colonisation factors and we hypothesised that prior colonisation by E. coli O26 may show reduced colonisation by E. coli O157. To test this hypothesis, strains of E. coli O26:K6O and O157:H7 were tested in competitive in vitro and in vivo studies. Using an established 6-week-old lamb model, an experimental group of lambs was dosed orally with E. coli O26:K6O and then E. coli O157:147 four days later. The faecal shedding of O26:K6O and O157:H7 organisms from this experimental group was compared with that from animals dosed with either O26:K6O alone or O157:H7 alone. Shedding data indicated that counts for O157:H7 were unaffected by the competition from O26:K6O, whereas the O26:K6O counts were lower when competing with O157:H7. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Salmonella are closely related to commensal Escherichia coli but have gained virulence factors enabling them to behave as enteric pathogens. Less well studied are the similarities and differences that exist between the metabolic properties of these organisms that may contribute toward niche adaptation of Salmonella pathogens. To address this, we have constructed a genome scale Salmonella metabolic model (iMA945). The model comprises 945 open reading frames or genes, 1964 reactions, and 1036 metabolites. There was significant overlap with genes present in E. coli MG1655 model iAF1260. In silico growth predictions were simulated using the model on different carbon, nitrogen, phosphorous, and sulfur sources. These were compared with substrate utilization data gathered from high throughput phenotyping microarrays revealing good agreement. Of the compounds tested, the majority were utilizable by both Salmonella and E. coli. Nevertheless a number of differences were identified both between Salmonella and E. coli and also within the Salmonella strains included. These differences provide valuable insight into differences between a commensal and a closely related pathogen and within different pathogenic strains opening new avenues for future explorations.
Resumo:
An Escherichia coli oligonucleotide microarray based on three sequenced genomes was validated for comparative genomic microarray hybridization and used to study the diversity of E. coli O157 isolates from human infections and food and animal sources. Among 26 test strains, 24 (including both Shiga toxin [Stx]-positive and -negative strains) were found to be related to the two sequenced E. coli O157:117 strains, EDL933 and Sakai. However, these strains showed much greater genetic diversity than those reported previously, and most of them could not be categorized as either lineage I or H. Some genes were found more often in isolates from human than from nonhuman sources; e.g., ECs1202 and ECs2976, associated with stx2AB and stx1AB, were in all isolates from human sources but in only 40% of those from nonhuman sources. Some (but not all) lineage I-specific or -dominant genes were also more frequently associated with isolates from human. The results suggested that it might be more effective to concentrate our efforts on finding markers that are directly related to infection rather than those specific to certain lineages. In addition, two Stx-negative O157 cattle isolates (one confirmed to be 117) were significantly different from other Stx-positive and -negative E. coli O157:117 strains and were more similar to MG1655 in their gene content. This work demonstrates that not all E. coli O157:117 strains belong to the same clonal group, and those that were similar to E. coli K-12 might be less virulent.
Resumo:
In this study, we used mouse ileal loops to investigate the interaction of enterohemorrhagic Escherichia coli (EHEC) O157:H7 with the mouse intestinal mucosa. With a dose of 10(9) and 3 h incubation, EHEC O157 was detected in the lumen and to a lesser extent associated with the epithelium. Typical attaching and effacing (A/E) lesions were seen, albeit infrequently. While the effector protein Tir was essential for A/E lesion formation, the bacterial type III secretion system adaptor protein TccP was dispensable. These results suggest that A/E lesions on mouse intestinal mucosa can be formed independently of robust actin polymerization.
Resumo:
The incidence of antimicrobial resistance and expressed and unexpressed resistance genes among commensal Escherichia coli isolated from healthy farm animals at slaughter in Great Britain was investigated. The prevalence of antimicrobial resistance among the isolates varied according to the animal species; of 836 isolates from cattle tested only 5.7% were resistant to one or more antimicrobials, while only 3.0% of 836 isolates from sheep were resistant to one or more agents. However, 92.1% of 2480 isolates from pigs were resistant to at least one antimicrobial. Among isolates from pigs, resistance to some antimicrobials such as tetracycline (78.7%), sulphonamide (66.9%) and streptomycin (37.5%) was found to be common, but relatively rare to other agents such as amikacin (0.1%), ceftazidime ( 0.1%) and coamoxiclav (0.2%). The isolates had a diverse range of resistance gene profiles, with tet(B), sul2 and strAB identified most frequently. Seven out of 615 isolates investigated carried unexpressed resistance genes. One trimethoprim-susceptible isolate carried a complete dfrA17 gene but lacked a promoter for it. However, in the remaining six streptomycin-susceptible isolates, one of which carried strAB while the others carried aadA, no mutations or deletions in gene or promoter sequences were identified to account for susceptibility. The data indicate that antimicrobial resistance in E. coli of animal origin is due to a broad range of acquired genes.
Resumo:
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.