791 resultados para Epoxy Composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to growing concerns for reducing environmental damage caused by the use of non-renewable raw materials, there is a growing demand for research related to aggregate technology with environmental preservation. Thus, the use of non-renewable materials and less aggressive materials has been gaining attention. About composite materials, the exchange of synthetic fibers by natural fibers, especially vegetable fiber as reinforcement, has been increasing, due to its physical-chemical properties such as mechanical strength, nontoxic, low cost, low density, processing flexibility, non-abrasive to the process equipment, requiring simple surface treatments, etc. This objective was to process composites reinforced with long fibers of sapegrass in epoxy matrix and characterize the composites through mechanical tests. Three groups of composites were prepared according to the treatment received by the reinforcement: without treatment, alkali treatment at concentration of 5% w/v and alkali treatment at 10% w/v concentration. The materials were analyzed by tensile and flexural, and tests also optical microscopy and scanning electron microscopy (SEM). The results were statistically analyzed. As the main result, the alkali treatment of 5% in the sapegrass fibers increases the tensile and flexural strength, as a consequence of the improve adhesion between matrix and reinforcement

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of bacterial cellulose-hydroxyapatite (BC-HA) composites associated with osteogenic growth peptide (OGP) or pentapeptide OGP(10–14) in bone regeneration in critical-size calvarial defects in mice. In this study, the BC-HA, BC-HA-OGP, and BC-HA-OGP(10–14) membranes were analyzed at 3, 7, 15, 30, 60, and 90 days. In each period, the specimens were evaluated by micro-computed tomography (µCT), descriptive histology, gene expression of bone biomarkers by qPCR and VEGFR-2 (vascular endothelial growth factor) quantification by ELISA. Three days post-operative, Runx2, Tnfrsf11b and Bglap bone biomarkers were upregulated mainly by BC-HA OGP and BC-HA OGP(10–14) membranes, suggesting an acceleration of the osteoblast differentiation/activity with the use of these biomaterials. At 60 and 90 days, a high percentage of bone formation was observed by µCT for BC-HA and BC-HA OGP(10–14) membranes. High expression of some bone biomarkers, such as Alpl, Spp1, and Tnfrsf11b, was also observed for the same membranes on days 60 and 90. In conclusion, the BC-HA membrane promoted a better bone formation in critical-size mice calvarial defects. Nevertheless, incorporation of the peptides at the concentration of 10−9 mol L−1 did not improve bone regeneration potential in the long-term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite resins are materials that can present color changing when exposed to pigments. Objective: The aim of this study was to evaluate, in vitro, the color changing of composites after immersion in different substances for different periods. Material and methods: Two microhybrid composite resins: Charisma (Heraeus – Kulzer) and Opallis (FGM) were used. Red wine and acai pulp were also used as immersion medium. For this study, 32 specimens with 10 mm of diameter and 2 mm of thickness were used, divided into 4 groups: Group 1 – Opallis composite immersed in red wine solution; Group 2 – Opallis composite immersed in acai berry pulp solution; Group 3 – Charisma composite immersed in red wine solution; Group 4 – Charisma composite immersed in acai berry pulp solution. The specimens were evaluated in the following time periods: T0 – baseline, T1 – 24 hours, T2 – 48 hours, T3 – 72 hours and T4 – 96 hours. For the assessment of staining, a spectrophotometer for colorimetry was used (Color Guide 45 / 0, PCB 6807 BYK-Gardner Gerestsried GmBH, Germany), and the values obtained were transferred to a computer and recorded according to CIELAB system. Results: The data were evaluated using Kruskal- Wallis non-parametric tests with the following mean values for the immersion periods of 24, 48, 72 and 96 hours, respectively: G1 – 7.35, 7.84, 9.04,10.48; G2 – 2.92, 4.15, 4.30, 4.64; G3 – 3.14, 7.35, 8.13, 8.43, G4 – 4.49, 5.99, 6.92, 6.76. Conclusion: Red wine showed a higher tendency toward altering the composite color than acai berry pulp. In addition, no significant difference was found concerning to the behavior of the two composite resins. Concerning to the immersion time periods, significant differences were only observed among the groups in the 24 hour time period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Alkalinization potential is a fundamental property of endodontic epoxy-based cements containing calcium hydroxide. Studies have shown discrepant pH results for same materials at different evaluation periods. A possible reason accounting for these differences may be the assessment procedures. Objective: To evaluate the pH value of an epoxy-based cement (Sealer 26) in different periods of analysis, using two assessment methods. Material and methods: Sealer 26 was manipulated and immediately placed into polyethylene tubes (n=10, each group) and immersed in distilled water. In G1, the tubes were kept in the same water during all experiment; and in G2, the tubes were removed and placed into another flask with an equal amount of water after the pH evaluation. The pH of these solutions was measured at 24 hours, 7, 14 and 28 days. Analysis were made within the same group according to the experimental periods and between groups in each experimental period. Data were submitted to ANOVA (α = 5%) and t test, respectively. Results: For G1 and G2, all periods showed different pH values (p < 0.05), except between 14 and 28 days (p > 0.05) and between 7 and 14 days (p > 0.05), respectively. In each period, no significant differences were observed between the groups. Conclusion: The method to obtain the pH values in different experimental periods no interfered in the final results. However, difference was observed when the results were analyzed at same group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human dentition is naturally translucent, opalescent and fluorescent. Differences between the level of fluorescence of tooth structure and restorative materials may result in distinct metameric properties and consequently perceptible disparate esthetic behavior, which impairs the esthetic result of the restorations, frustrating both patients and staff. In this study, we evaluated the level of fluorescence of different composites (Durafill in tones A2 (Du), Charisma in tones A2 (Ch), Venus in tone A2 (Ve), Opallis enamel and dentin in tones A2 (OPD and OPE), Point 4 in tones A2 (P4), Z100 in tones A2 ( Z1), Z250 in tones A2 (Z2), Te-Econom in tones A2 (TE), Tetric Ceram in tones A2 (TC), Tetric Ceram N in tones A1, A2, A4 (TN1, TN2, TN4), Four seasons enamel and dentin in tones A2 (and 4SD 4SE), Empress Direct enamel and dentin in tones A2 (EDE and EDD) and Brilliant in tones A2 (Br)). Cylindrical specimens were prepared, coded and photographed in a standardized manner with a Canon EOS digital camera (400 ISO, 2.8 aperture and 1/ 30 speed), in a dark environment under the action of UV light (25 W). The images were analyzed with the software ScanWhite©-DMC/Darwin systems. The results showed statistical differences between the groups (p < 0.05), and between these same groups and the average fluorescence of the dentition of young (18 to 25 years) and adults (40 to 45 years) taken as control. It can be concluded that: Composites Z100, Z250 (3M ESPE) and Point 4 (Kerr) do not match with the fluorescence of human dentition and the fluorescence of the materials was found to be affected by their own tone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The aim of this study was to compare the effect of QMix, BioPure MTAD, 17 % EDTA, and saline on the penetrability of a resin-based sealer into dentinal tubules using a confocal laser scanning microscope (CLSM) and to describe the cleaning of root canal walls by SEM. Methods Eighty distobuccal roots from upper molars were selected and randomly divided into four groups (n=20) before root canal preparation according to the solution used in the final rinse protocol (FRP): QG (QMix), MG (BioPure MTAD), EG (17 % EDTA), and CG (control group: saline). Ten roots of each group were prepared for SEM, and images (×2000) from the canal walls were acquired. The remaining canals were filled with a single gutta-percha cone and AH Plus with 0.1 % Rhodamine B. The specimens were horizontally sectioned at 4 mm from the apex, and the slices were analyzed in CLSM (×10). Sealer penetration was analyzed with Adobe Photoshop software. Results QG and EG presented similar amounts of sealer penetration (P>.05). MG and CG presented the lowest penetrability values (P<.05). The best results for smear layer removal of the apical third of the root canal were achieved by the QG and EG groups when compared with MG and CG (P<.05). Conclusions Seventeen percent EDTA and QMix promoted sealer penetration superior to that achieved by BioPure MTAD and saline. Clinical relevance Despite studies have not confirmed the relationship between sealing ability of endodontic sealers and their penetration in dentinal tubules, sealer penetration assumes importance, since endodontic sealers, unlike guttapercha, are able to penetrate in dentinal tubules, isthmus, and accessory canals, filling the root canal system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Methods Specimens of the sealers (10 mm in diameter × 1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. Results The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P > 0.05) and inferior to AH Plus (P < 0.05). AH Plus did not show bioactivity. Although the experimental sealers did not exhibit the formation of hydration product, they encouraged the deposition of crystalline spherical structures of calcium deficient phosphate. The highest pH and calcium release values were observed with the experimental sealers (P < 0.01). ES-Nb-micro was the only sealer to present hexagonal shaped crystal deposition. Significance Novel root canal sealers based on a mixture of Portland cement, epoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effectiveness of isopropyl alcohol, saline or distilled water to prevent the precipitate formed between sodium hypochlorite (NaOCl) and chlorhexidine (CHX) and its effect on the bond strength of an epoxy-based sealer in radicular dentine. Methodology The root canals of 50 extracted human canines (n = 10) were instrumented. In G1, root canals were irrigated with 17% EDTA and 2.5% NaOCl; G2, as G1, except that 2% CHX was used as the final irrigant. In the other groups, intermediate flushes with isopropyl alcohol (G3), saline (G4) or distilled water (G5) were used between NaOCl and CHX. The specimens were submitted to SEM analysis to evaluate the presence of debris and smear layer, in the apical and cervical segments. In sequence, fifty extracted human canines were distributed into five groups (n = 10), similar to the SEM study. After root filling, the roots were sectioned transversally to obtain dentine slices, in the cervical, middle and apical thirds. The root filling was submitted to a push-out bond strength test using an electromechanical testing machine. Statistical analysis was performed using Kruskal–Wallis and Dunn's tests (α = 5%). Results All groups had similar amounts of residue precipitated on the canal walls (P > 0.05). The push-out bond strength values were similar for all groups, independently of the root third evaluated (P > 0.05). Conclusions Isopropyl alcohol, saline and distilled water failed to prevent the precipitation of residues on canal walls following the use of NaOCl and CHX. The residues did not interfere with the push-out bond strength of the root filling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. This study aimed to investigate the surface roughness of composite resins subjected to thermal cycles procedure. Materials and methods. Two microfill, four microhybrid and four nanofill composites were used. The surface roughness (Ra) was initially measured in a profilometer using a cut-off 0f 0.25 mm, after 3000 and 10,000 thermal cycles. Data were subjected to ANOVA and Fischer's test (alpha = 0.05). Results. Overall, 3000 thermal cycles increased the surface roughness values for all materials and there was a trend in all groups to decrease the roughness after 10,000 thermal cycles. Conclusions. The composition of material, including the type of organic matrix, could be more relevant to roughness maintenance over time than the general behavior of composites based on particles fillers. The maintenance of smooth surface in resin-based composite restorations is totally dependent of organic composition of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This study investigated the repairs of resin composite restorations after using different surface treatments.Design: Eighty four truncated cones of Filtek Z350 were prepared and thermo-cycled (20,000 cycles). Surfaces were roughened with diamond bur and etched with 37% phosphoric acid. Those cones were divided into 7 groups (N=12): 1) Prime&Bond 2.1; 2) aluminum oxide sandblasting+Prime&Bond 2.1; 3) Er:YAG laser treatment+Prime&Bond 2.1; 4) 9.6% hydrofluoric acid for 2 min-Fsilane coupling agent.; 5) silane coupling agent; 6) auto-polymerized acrylic monomer+Prime&Bond 2.1; 7) Adper Scothbond SE. Teflon device was used to fabricate inverted truncated cones of repair composite over the surface-treated. The bonded specimens were stressed to failure under tension. The data were analyzed with oneway ANOVA and Tukey tests.Results: Mean repair strengths (SD, in MPa) were, Group-2: 18.8a; Group-1: 18.7a; Group-6: 13.4ab; Group-7: 9.5bc; Group-3: 7.5bcd; Group-4: 5.2cd; Group-5: 2.6d.Conclusions: The use of diamond bur and a conventional adhesive and the use of aluminum oxide sandblasting prior to adhesive provided a simple and cost-effective solutions to composite repair. Er:YAG laser, silane alone, 9.6% hydrofluoric acid plus silane or a self-etching adhesive results in inferior composite repair strengths. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)