943 resultados para Epithelial Cytokeratins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A membrane fraction (M$\sb{\rm PS}$), enriched in Cl$\sp-$ channels, has been isolated from bovine tracheal epithelia and renal cortex homogenates by hydrophobic chromatography. The tracheal fraction shows a 37 fold enrichment of Cl$\sp-$ channels over crude tracheal homogenates by net Cl$\sp-$ measurements in membrane vesicles. Alkaline phosphatase and (Na$\sp+$ + K$\sp+$)-ATPase are not found in these membranes, suggesting that they are not apical or basolateral plasma membranes. The M$\sb{\rm PS}$ fraction exhibits a protein profile unlike that of other membrane fractions with major proteins of 200 kDa and 42 kDa, proteins of 30 to 35 kDa, and lesser amounts of other proteins. Reconstitution of M$\sb{\rm PS}$ fractions from both trachea and kidney into planar lipid bilayers demonstrates the presence of a single type of anion channel. The current-voltage relationship of this channel is linear with a slope conductance of 84 pS in symmetrical 400 mM KCl, and is identical to that of the predominant anion channel observed in tracheal apical membranes under similar conditions (Valdivia, Dubinsky, and Coronado. Science, 1988). In addition, the voltage dependence, selectivity sequence of Cl$\sp- >$ Br$\sp- \ge$ I$\sp-$, and inhibition by low concentrations of the Cl$\sp-$ channel blocker, DIDS, correspond to those of the predominant apical membrane channel. Thus, although the M$\sb{\rm PS}$ fraction appears to be of subcellular origin, it may be functionally related to an apical membrane Cl$\sp-$ permeability. When renal M$\sb{\rm PS}$ membranes were treated with the detergent octyl-glucoside (OG, 2%) and centrifuged, the supernatant, sM$\sb{\rm PS}$, showed a 2 to 7-fold enrichment in specific Cl$\sp-$ flux activity compared with the detergent treated M$\sb{\rm PS}$. These solubilized proteins were then size fractionated on a Superose 12 HPLC gel filtration column, followed by fractionation on a Mono Q HPLC anion exchange column. Fractions that eluted in high salt consistently exhibited significant Cl$\sp-$ flux activity. These fractions had protein profiles consisting of a major band at 34 kDa, a band at 66 kDa, and variable faint bands. Fractions eluting in lower salt had protein profiles consisting of a single band at 34 kDa, and often had little or no Cl$\sp-$ flux activity. However, co-reconstitution of the low salt, solely 34 kDa protein-containing Mono Q fractions with sM$\sb{\rm PS}$ resulted in an enhancement of flux activity compared to that of sM$\sb{\rm PS}$ reconstituted alone. Flux assays of active Mono Q fractions showed that the channel retained its DIDS sensitivity. Applying sM$\sb{\rm PS}$ to a DIDS-affinity column and eluting with salt resulted in fractions with protein profiles again consisting of at least one major band at 34 kDa, a band at 66 kDa, and variable faint bands. Co-reconstitution with sM$\sb{\rm PS}$ again resulted in an enhancement of activity. Thus, the 34 kDa protein appears to be a component of the M$\sb{\rm PS}$ Cl$\sp-$ channel. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrophysiological studies were conducted to test the hypothesis that alterations in intestinal epithelial function are associated with immunological responses directed against the enteric parasite, Trichinella spirals. Trichinella antigens were used to challenge sensitized jejunum from infected guinea pigs while monitoring ion transport properties of the tissue in an Ussing-type chamber. The addition of antigen caused increases in transepithelial PD and I(,sc) that were rapidly induced, peaked at 1.5 to 2 min after antigen-challenge, and lasted 10 to 20 min thereafter. The increase in I(,sc) ((DELTA)I(,sc)) varied in a dose-dependent manner until a maximal increase of 40 (mu)A/cm('2) was obtained by the addition of 13 (mu)g of antigenic protein per ml of serosal fluid in the Ussing chamber. Trichinella antigen did not elicit alterations in either PD or I(,sc) of nonimmune tissue. Jejunal tissue from guinea pigs immunized with ovalbumin according to a protocol that stimulated homocytotropic antibody production responded electrically to challenge with ovalbumin but not trichinella antigen. Jejunal tissue which was passively sensitized with immune serum having a passive cutaneous anaphylaxis (PCA) titer of 32 for both IgE and IgG(,1) anti-trichinella anti-bodies responded electrically after exposure to trichinella antigen. Heat treatment of immune serum abolished the anti-trichinella IgE titer as determined by the PCA test but did not decrease either the electrical response of passively sensitized tissue to antigen or the anaphylactically mediated intestinal smooth muscle contractile response to antigen in the classical Schultz-Dale assay. These results strongly support the hypothesis that immunological responses directed against Trichinella Spiralis alter intestinal epithelial function and suggest that immediate hypersensitivity is the immunological basis of the response.^ Additional studies were performed to test the hypothesis that histamine and prostaglandins that are released from mucosal mast cells during IgE or IgG(,1) - antigen stimulated degranulation mediate electrophysiological changes in the intestinal epithelium that are reflective of Cl('-) secretion and mediated intracellularly by cAMP. Pharmacological and biochemical studies were performed to determine the physiological messengers and ionic basis of electrical alterations in small intestinal epithelium of the guinea pig during in vitro anaphylaxis. Results suggest that Cl('-) secretion mediated, in part, by cAMP contributes to antigen-induced jejunal ion transport changes and that histamine and prostaglandins are involved in eliciting epithelial responses. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) remains a major clinical challenge to date. Repeated alveolar epithelial microinjuries are considered as the starting point and the key event in both the development and the progression of IPF. Various pro-fibrotic agents have been identified and shown to cause alveolar damage. In IPF, however, no leading cause of alveolar epithelial microinjuries can be identified and the exact etiology remains elusive. New results from epidemiologic studies suggest a causal relation between IPF and frequent episodes of gastric refluxes resulting in gastric microaspirations into the lung. The effect of gastric contents on the alveolar epithelium has not been investigated in detail. Here, we present a microfluidic lung epithelial wounding system that allows for the selective exposure of alveolar epithelial cells to gastric contents. The system is revealed to be robust and highly reproducible. The thereby created epithelial microwounds are of tiny dimensions and best possibly reproduce alveolar damage in the lung. We further demonstrate that exposure to gastric contents, namely hydrochloric acid (HCl) and pepsin, directly damages the alveolar epithelium. Together, this novel in vitro wounding system allows for the creation of in vivo-like alveolar microinjuries with the potential to study lung injury and alveolar wound repair in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus-associated pulmonary exacerbations, often associated with rhinoviruses (RVs), contribute to cystic fibrosis (CF) morbidity. Currently, there are only a few therapeutic options to treat virus-induced CF pulmonary exacerbations. The macrolide antibiotic azithromycin has antiviral properties in human bronchial epithelial cells. We investigated the potential of azithromycin to induce antiviral mechanisms in CF bronchial epithelial cells. Primary bronchial epithelial cells from CF and control children were infected with RV after azithromycin pre-treatment. Viral RNA, interferon (IFN), IFN-stimulated gene and pattern recognition receptor expression were measured by real-time quantitative PCR. Live virus shedding was assessed by assaying the 50% tissue culture infective dose. Pro-inflammatory cytokine and IFN-β production were evaluated by ELISA. Cell death was investigated by flow cytometry. RV replication was increased in CF compared with control cells. Azithromycin reduced RV replication seven-fold in CF cells without inducing cell death. Furthermore, azithromycin increased RV-induced pattern recognition receptor, IFN and IFN-stimulated gene mRNA levels. While stimulating antiviral responses, azithromycin did not prevent virus-induced pro-inflammatory responses. Azithromycin pre-treatment reduces RV replication in CF bronchial epithelial cells, possibly through the amplification of the antiviral response mediated by the IFN pathway. Clinical studies are needed to elucidate the potential of azithromycin in the management and prevention of RV-induced CF pulmonary exacerbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Primary nasal epithelial cells are used for diagnostic purposes in clinical routine and have been shown to be good surrogate models for bronchial epithelial cells in studies of airway inflammation and remodeling. We aimed at comparing different instruments allowing isolation of nasal epithelial cells. METHODS Primary airway epithelial cell cultures were established using cells acquired from the inferior surface of the middle turbinate of both nostrils. Three different instruments to isolate nasal cells were used: homemade cytology brush, nasal swab, and curette. Cell count, viability, time until a confluent cell layer was reached, and success rate in establishing cell cultures were evaluated. A standard numeric pain intensity scale was used to assess the acceptability of each instrument. RESULTS Sixty healthy adults (median with interquartile range [IQR] age of 31 [26-37] years) participated in the study. Higher number of cells (×10(5) cells/ml) was obtained using brushes (9.8 [5.9-33.5]) compared to swabs (2.4 [1.5-3.9], p < 0.0001) and curettes (5.5 [4.4-6.9], p < 0.01). Cell viability was similar between groups. Cells obtained by brushes had the fastest growth rate, and the success rate in establishing primary cell cultures was highest with brushes (90% vs. 65% for swabs and 70% for curettes). Pain was highest with curettes (VAS score 4.0 [3.0-5.0] out of 10). The epithelial phenotype of the cultures was confirmed through cytokeratin and E-cadherin staining. CONCLUSIONS All three types of instruments allow collection and growth of human nasal epithelial cells with good acceptability to study participants. The most efficient instrument is the nasal brush.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.