1000 resultados para Epistolary networks
Resumo:
Design criteria and full-diversity Distributed Space Time Codes (DSTCs) for the two phase transmission based cooperative diversity protocol of Jing-Hassibi and the Generalized Nonorthogonal Amplify and Forward (GNAF) protocol are reported, when the relay nodes are assumed to have knowledge of the phase component of the source to relay channel gains. It is shown that this under this partial channel state information (CSI), several well known space time codes for the colocated MIMO (Multiple Input Multiple Output) channel become amenable for use as DSTCs. In particular, the well known complex orthogonal designs, generalized coordinate interleaved orthogonal designs (GCIODs) and unitary weight single symbol decodable (UW-SSD) codes are shown to satisfy the required design constraints for DSTCs. Exploiting the relaxed code design constraints, we propose DSTCs obtained from Clifford Algebras which have low ML decoding complexity.
Resumo:
Researchers are assessed from a researcher-centric perspective - by quantifying a researcher's contribution to the field. Citation and publication counts are some typical examples. We propose a student-centric measure to assess researchers on their mentoring abilities. Our approach quantifies benefits bestowed by researchers upon their students by characterizing the publication dynamics of research advisor-student interactions in author collaboration networks. We show that our measures could help aspiring students identify research advisors with proven mentoring skills. Our measures also help in stratification of researchers with similar ranks based on typical indices like publication and citation counts while being independent of their direct influences.
Resumo:
A Delay Tolerant Network (DTN) is a dynamic, fragmented, and ephemeral network formed by a large number of highly mobile nodes. DTNs are ephemeral networks with highly mobile autonomous nodes. This requires distributed and self-organised approaches to trust management. Revocation and replacement of security credentials under adversarial influence by preserving the trust on the entity is still an open problem. Existing methods are mostly limited to detection and removal of malicious nodes. This paper makes use of the mobility property to provide a distributed, self-organising, and scalable revocation and replacement scheme. The proposed scheme effectively utilises the Leverage of Common Friends (LCF) trust system concepts to revoke compromised security credentials, replace them with new ones, whilst preserving the trust on them. The level of achieved entity confidence is thereby preserved. Security and performance of the proposed scheme is evaluated using an experimental data set in comparison with other schemes based around the LCF concept. Our extensive experimental results show that the proposed scheme distributes replacement credentials up to 35% faster and spreads spoofed credentials of strong collaborating adversaries up to 50% slower without causing any significant increase on the communication and storage overheads, when compared to other LCF based schemes.
Resumo:
Public key authentication is the verification of the identity-public key binding, and is foundational to the security of any network. The contribution of this thesis has been to provide public key authentication for a decentralised and resource challenged network such as an autonomous Delay Tolerant Network (DTN). It has resulted in the development and evaluation of a combined co-localisation trust system and key distribution scheme evaluated on a realistic large geographic scale mobility model. The thesis also addresses the problem of unplanned key revocation and replacement without any central authority.
Resumo:
In this paper, we are concerned with energy efficient area monitoring using information coverage in wireless sensor networks, where collaboration among multiple sensors can enable accurate sensing of a point in a given area-to-monitor even if that point falls outside the physical coverage of all the sensors. We refer to any set of sensors that can collectively sense all points in the entire area-to-monitor as a full area information cover. We first propose a low-complexity heuristic algorithm to obtain full area information covers. Using these covers, we then obtain the optimum schedule for activating the sensing activity of various sensors that maximizes the sensing lifetime. The scheduling of sensor activity using the optimum schedules obtained using the proposed algorithm is shown to achieve significantly longer sensing lifetimes compared to those achieved using physical coverage. Relaxing the full area coverage requirement to a partial area coverage (e.g., 95% of area coverage as adequate instead of 100% area coverage) further enhances the lifetime.
Resumo:
In this paper, we are concerned with algorithms for scheduling the sensing activity of sensor nodes that are deployed to sense/measure point-targets in wireless sensor networks using information coverage. Defining a set of sensors which collectively can sense a target accurately as an information cover, we propose an algorithm to obtain Disjoint Set of Information Covers (DSIC), which achieves longer network life compared to the set of covers obtained using an Exhaustive-Greedy-Equalized Heuristic (EGEH) algorithm proposed recently in the literature. We also present a detailed complexity comparison between the DSIC and EGEH algorithms.
Resumo:
Renewable energy resources, in particularly PV and battery storage are increasingly becoming part of residential and agriculture premises to manage their electricity consumption. This thesis addresses the tremendous technical, financial and planning challenges for utilities created by these increases, by offering techniques to examine the significance of various renewable resources in electricity network planning. The outcome of this research should assist utilities and customers for adequate planning that can be financially effective.
Resumo:
Space-time block codes (STBCs) that are single-symbol decodable (SSD) in a co-located multiple antenna setting need not be SSD in a distributed cooperative communication setting. A relay network with N relays and a single source-destination pair is called a partially-coherent relay channel (PCRC) if the destination has perfect channel state information (CSI) of an the channels and the relays have only the phase information of the source-to-relay channels. In our earlier work, we had derived a set of necessary and sufficient conditions for a distributed STBC (DSTBC) to be SSD for a PCRC. Using these conditions, in this paper we show that the possibility of channel phase compensation operation at the relay nodes using partial CSI at the relays increases the possible rate of SSD DSTBCs from 2/N when the relays do not have CSI to 1/2, which is independent of N. We also show that when a DSTBC is SSD for a PCRC, then arbitrary coordinate interleaving of the in-phase and quadrature-phase components of the variables does not disturb its SSD property. Using this property we are able to construct codes that are SSD and have higher rate than 2/N but giving full diversity only for signal constellations satisfying certain conditions.
Resumo:
Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DST-BCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space viewpoint is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces $\mathcal{S_I}$ and $\mathcal{S_C}$ and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating $\mathcal{S_I}$ and $\mathcal{S_C}$ is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. The average case CC of the relevant greater-than (GT) function is characterized within two bits. In the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm.
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices, we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: (1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, (2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which (3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time), based on the sensor observations obtained until time slot k. Our results show that an optimum closed loop control on Mk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
The differential encoding/decoding setup introduced by Kiran et at, Oggier et al and Jing et al for wireless relay networks that use codebooks consisting of unitary matrices is extended to allow codebooks consisting of scaled unitary matrices. For such codebooks to be used in the Jing-Hassibi protocol for cooperative diversity, the conditions that need to be satisfied by the relay matrices and the codebook are identified. A class of previously known rate one, full diversity, four-group encodable and four-group decodable Differential Space-Time Codes (DSTCs) is proposed for use as Distributed DSTCs (DDSTCs) in the proposed set up. To the best of our knowledge, this is the first known low decoding complexity DDSTC scheme for cooperative wireless networks.
Resumo:
A combined base station association and power control problem is studied for the uplink of multichannel multicell cellular networks, in which each channel is used by exactly one cell (i.e., base station). A distributed association and power update algorithm is proposed and shown to converge to a Nash equilibrium of a noncooperative game. We consider network models with discrete mobiles (yielding an atomic congestion game), as well as a continuum of mobiles (yielding a population game). We find that the equilibria need not be Pareto efficient, nor need they be system optimal. To address the lack of system optimality, we propose pricing mechanisms. It is shown that these mechanisms can be implemented in a distributed fashion.
Resumo:
The use of social networking has exploded, with millions of people using various web- and mobile-based services around the world. This increase in social networking use has led to user anxiety related to privacy and the unauthorised exposure of personal information. Large-scale sharing in virtual spaces means that researchers, designers and developers now need to re-consider the issues and challenges of maintaining privacy when using social networking services. This paper provides a comprehensive survey of the current state-of-the-art privacy in social networks for both desktop and mobile uses and devices from various architectural vantage points. The survey will assist researchers and analysts in academia and industry to move towards mitigating many of the privacy issues in social networks.