982 resultados para Environmental Health|Health Sciences, Public Health|Geochemistry
Resumo:
The hepatotoxin cylindrospermopsin (CYN) has been isolated from the cyanobacterium Cylindrospermopsis raciborskii (C. raci.). Efforts to study this toxin have been hampered by the time-consuming requirement to extract it from cultures of the organism. It is usually extracted from lyophilized cells collected from a laboratory culture. Our preliminary work suggested far more of the toxin is available in solution in the culture media than in the cells collected. We have therefore investigated the use of commercially available solid phase extraction sorbents to extract CYN from culture media in which C. raci. has been grown. A range of reverse phase and ion-exchange sorbents were tested across a range of pHs for their ability to retain CYN without success. Subsequently, graphitized carbon cartridges were found to retain CYN strongly. Elution with 5% formic acid in methanol allowed the CYN to be regained for final purification by HPLC. Deoxy-CYN, an analog of CYN can also be extracted using this procedure. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A strain of Raphidiopsis (Cyanobacteria) isolated from a fish pond in Wuhan, P. R. China was examined for its taxonomy and production of the alkaloidal hepatotoxins cylindrospermopsin (CYN) and deoxy-cylindrospermopsin (deoxy-CYN). Strain HB1 was identified as R. curvata Fritsch et Rich based on morphological examination of the laboratory culture. HB1 produced mainly deoxy-CYN at a concentration of 1.3 mg(.)g(-1) (dry ut cells) by HPLC and HPLC-MS/MS. CYN was also detected in trace amounts (0.56 mug(.)g(-1)). A mouse bioassay did not show lethal toxicity when tested at doses up to 1500 mg dry weight cells(.)kg(-1) body weight within 96 h, demonstrating that production of primarily deoxy CYN does not lead to significant mouse toxicity by strain BB I. The presence of deoxy-CYN and CYN in R curvata suggests that Raphidiopsis belongs to the Nostocaceae, but this requires confirmation by molecular systematic studies. Production of these cyanotoxins by Raphidiopsis adds another genus, in addition to Cylindrospemopsis, Aphanizomenon, and Umezakia, now known to produce this group of hepatotoxic cyanotoxins. This is also the first report from China of a CYN and deoxy-CYN producing cyanobacterium.
Resumo:
Radiolabelled C-14 cylindrospermopsin (CYN) has been prepared and used to investigate the distribution and excretion of CYN in vivo in male Quackenbush mice. At a dose of 0.2 mg/kg (i.e., approx. median lethal dose) the following mean (SID) urinary and faecal recoveries (cumulative) were obtained, respectively: (0-6 hours, n = 4) 48.2 (29.3)%, 11.9 (21.4)%; (0-12 hours, n = 12) 66.0 (27.1)%, 5.7 (5.6)%; (0-24 hours, n = 12) 68.4 (26.7)%, 8.5 (8.1)%. Mean (SD) recoveries from livers at 6 hours were 20.6 (6.4)% (n = 4), at 48 hours 13.1 (7.7)% (n = 8), and 5-7 days were 2.1 (2.1)% (n = 8). A substantial amount (up to 23%) can be retained in the liver for up to 48 hours with a lesser amount retained in the kidneys. The excretion patterns show substantial interindividual variability between predominantly faecal or urinary excretion, but these patterns are not related in any simple manner to the outcome in terms of toxicity. There is at least one methanol-extractable metabolite as well as a nonmethanol-extractable metabolite in the liver. The methanol-extractable metabolite was not found in the kidney and is more hydrophilic than CYN itself on reverse phase. (C) 2001 by John Wiley & Sons, Inc.
Resumo:
A strain of Cylindrospermopsis (Cyanobacteria) isolated from a fishpond in Thailand was examined for its taxonomy based upon morphology and 16S rRNA gene sequence. It was also examined for production of the hepatotoxic cyanotoxin called cylindrospermopsin (CYN) and deoxycylindrospermopsin (deoxy-CYN). The strain (CY-Thai) was identified as C. raciborskii (Woloszynska) Seenaya and Subba Raju based upon morphological examination which was confirmed by 16S rRNA gene sequences and phylogenetic comparisons based upon its 16S rRNA gene. The alkaloid heptatotoxin CYN was confirmed using mouse bioassay, HPLC and HPLC-MS/MS while deoxy-CYN was confirmed using HPLC-MS/MS. The mouse bioassay gave a minimum lethal dose at 250 mg dry weight cells/kg body weight within 24 h and 125 mg/kg at 72 h, with signs of poisoning the same as in literature reports for CYN. HPLC chromatographic comparison of the CY-Thai toxin with standard CYN gave the same retention time and an absorbance maximum at 262 nm. HPLC-MS/MS confirmed the presence of CYN (M + H 416) and deoxy-CYN (M + H 400). The CYN content in strain CY-Thai was estimated at 1.02 mg/g and approximately 1/10 of this amount for deoxy-CYN. This is the first report from Asia of a CYN, deoxy-CYN producing Cylindrospermopsis raciborskii. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A range of organohalogen compounds (10 polychlorinated biphenyl [PCB] congeners, DDT and metabolites, chlordane-related compounds, the potential natural organochlorine compound Q1, toxaphene, hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and several yet unidentified brominated compounds) were detected in the blubber of four bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis), and seven dugongs (Dugong dugon), as well as in adipose tissue of a green turtle (Chelonia mydas) and a python (Morelia spilota) from northeast Queensland (Australia). The green turtle and dugongs accumulated lower organohalogen levels than the dolphins. Lower levels in dugongs were expected because this species is exclusively herbivorous. Highest PCB and DDT levels recorded in dugongs were 209 and 173 mug/kg lipids, respectively. Levels of the nonanthropogenic heptachlorinated compound Q1 (highest level in dugongs was 160 mug/kg lipids) were estimated using the ECD response factor of trans-nonachlor. Highest organohalogen levels were found in blubber of dolphins for sumDDT (575-52,500 mug/kg) and PCBs (600-25,500 mug/kg lipids). Furthermore, Q1 was a major organohalogen detected in all samples analyzed, ranging from 450 -9,100 mug/kg lipids. The highest concentration of Q1 determined in this study represents the highest concentration reported to date in an environmental sample. Levels of chlordane-related compounds were also high (280-7,700 mug/kg, mainly derived from trans-nonachlor), but concentrations of hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and toxaphene were relatively low and contributed little to the overall organohalogen contamination. Furthermore, a series of three major (BC-1, BC-2, and BC-3) and six minor (BC-4 through BC-9) unknown brominated compounds were observable by extracting m/z 79 and m/z 81 from the GC/ECNI-MS full scan run. Structural proposals were made for the two major recalcitrant compounds (referred to as BC-1 and BC-2). BC-2 appears to be a tetrabromo-methoxy-diphenylether (512 u) and BC-1 has 14 u (corresponding with an additional CH2 group) more relative to BC-1. In general the organohalogen pattern observed in blubber of dolphins was different compared to similar samples from other locations in the world, which is apparent from the fact that the four major abundant signals in the GC/ECD chromatogram. of D. delphis originated from the four unknown compounds Q1, BC-1, BC-2, and BC-3.
Resumo:
Recent investigations have demonstrated the presence of an unidentified source of polychlorinated dibenzo-p-dioxins (PCDDs) in the coastal zone of Queensland (Australia). The present study provides new information on the possible PCDD sources and their temporal input to this environment. Two estuarine sediment cores were collected in northern Queensland for which radiochemical chronologies were established. Core sections from different depositional ages, up to three centuries, have been analyzed for 2,3,7,8-substituted PCDDs and polychlorinated dibenzofurans (PCDFs). Variations of PCDD concentrations in the sediment cores over several centuries of depositional history were relatively small, and elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F isomer patterns and congener profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. Profiles were dominated by higher chlorinated PCDDs, in particular octachlorodibenzodioxin (OCDD), whereas PCDF concentrations were below or near the limit of detection. These results indicate the presence of a PCDD source prior to industrialization and production of commercial organochlorine products. Further, the present study demonstrates that PCDD input patterns have been similar along an extensive but localized area over at least several centuries, contributing relatively high concentrations of PCDDs to the coastal system of Queensland.
Resumo:
The concentrations of SOCs in leaves of an evergreen Australian native tree (Melaleuca leucadendra) and grass collected in Brisbane, Australia were determined. The concentrations of PCDD/Fs and PAHs in the leaf tissue were comparable to those reported for urbanised areas in other industrialised countries. A distinct difference in the compound profiles between the leaves of the two species was observed, with higher concentrations of the lower molecular mass PAHs and PCDD/Fs and lower concentrations of the higher molecular mass PAHs and PCDD/Fs in the Melaleuca leaves relative to the grass leaves. The interspecies differences are explained on the basis of the larger size of the lipophilic compartment (for compounds with low K-OA) and the lower ratio of surface area to volume in the Melaleuca leaves. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) concentrations were measured in sediment and seagrass from five locations in or adjacent to the Great Barrier Reef Marine Park. A full spectrum of Cl(5-8)DDs were present in all samples and, in particular, elevated levels of Cl8DD were found. PCDFs could not be quantified in any samples. The PCDD concentrations ranged over two orders of magnitude between sites, and there was a good correlation between sediment and seagrass levels. There were large quantities of sediment present on the seagrass (20-62% on a dry wt. basis), and it was concluded that this was a primary source of the PCDDs in the seagrass samples. The PCDD levels in the seagrass samples were compared with the levels in the tissue of three dugongs stranded in the same region. The relative accumulation of the 2,3,7,8-substituted PCDD congeners in the dugongs decreased by over two orders of magnitude with increasing degree of chlorination. This was attributed to the reduced absorption of the higher chlorinated congeners in the digestive tract, a behaviour that has been observed in other mammals such as domestic cows. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Recent studies have demonstrated the occurrence of elevated levels of higher chlorinated PCDDs in the coastal environment of Queensland, Australia. This study presents new data for OCDD contamination and full PCDD/F profile analysis in the environment of Queensland. Marine sediments, irrigation drain sediments and topsoil were collected from sites that were expected to be influenced by specific land-use types. High OCDD concentrations were associated mainly with sediments collected near the mouth of rivers which drain into large catchments in the tropical and subtropical regions. Further, analysis of sediments from irrigation drains could be clearly differentiated on the basis of OCDD contamination, with high concentrations in samples from sugarcane drains collected from coastal regions, and low concentrations in drain sediments from drier inland cotton growing areas. PCDD/F congener-specific analysis demonstrated almost identical congener profiles in all samples collected along the coastline. This indicates the source to be widespread. Profiles were dominated by higher chlorinated PCDDs, in particular OCDD whereas 2,3,7,8-substituted PCDFs were below the limit of quantification in the majority of samples. The full PCDD/F profile analysis of samples strongly resemble those reported for lake sediments from Mississippi and kaolinite samples from Germany, Strong similarities to these samples with respect to congener profiles and isomer patterns may indicate the presence of a similar source and/or formation process that is yet unidentified. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Cylindrospermopsis raciborskii produces the cyanotoxin cylindrospermopsin, which is commonly found in SouthEast Queensland water reservoirs, and has been responsible for the closure of these reservoirs as a source of drinking water in recent times. Thus, alternative more effective treatment methods need to be investigated for the removal of toxins such as cylindrospermopsin. This study examined the effectiveness of two brands of titanium dioxide under UV photolysis for the degradation of cylindrospermopsin. Results indicate that titanium dioxide is an efficient photocatalyst for cylindrospermopsin degradation. The titanium dioxide (TiO2), brand Degussa P-25 was found to be more efficient than the alternate brand Hombikat UV-100. There was an influence from solution pH (4, 7, and 9) with both brands of titanium dioxide, with high pH resulting in the best degradation rate. Importantly, there was no adsorption of cylindrospermopsin to titanium dioxide particles as seen with other cyanotoxins, which would adversely influence the degradation rate. Degradation rates were not influenced by temperature (19-34 degreesC) when P-25 was the source of TiO2, some temperature influence was observed with UV-100. Dissolved organic carbon concentration will reduce the efficiency of titanium dioxide for cylindrospermopsin degradation, however the presence of other inorganic matter in natural waters greatly assists the photocatalytic process. With minimal potentially toxic by-product formation expected with this treatment, and the effective degradation of cylindrospermopsin, titanium dioxide UV photolysis is a promising speculative alternative water treatment method. (C) 2001 Elsevier Science Ltd. All rights reserved.