921 resultados para Entropy of Tsallis
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.
Resumo:
The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.3%, while the inaccuracy is within +/-0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H-(T)- H-298.15 K} and {S-(T)-S-298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach.
Resumo:
Pyrimethanil myristic salt was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from T = (79 to 360) K. The melting point, molar enthalpy, Delta(fus)H(m) and entropy, Delta(fus)S(m), of fusion of this compound were determined to be (321.84 +/- 0.05) K, (56.53 +/- 0.03) kJ . mol(-1) and (175.64 +/- 0.05) J . mol(-1) . K-1, respectively. The purity of the compound was calculated to be 98.99 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature, T = 298.15 K, were calculated based on the heat capacity measurements in the temperature ranges from T = (80 to 360) K. The TG-DTG results demonstrate that the mass loss of the sample takes place in one step with the maximum rate at T = 500 K, which was caused by evaporation of the sample. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The molar heat capacities of 1-(2-hydroxy-3-chloropropyl)-2-methyl-5-nitroimidazole (Ornidazole) (C7H10CIN3O3) with purity of 99.72mol% were measured with an adiabatic calorimeter in the temperature range between 79 and 380K. The melting-point temperature, molar enthalpy Delta(fus)H(m), and entropy, Delta(fus)S(m), of fusion of this compound were determined to be 358.59 +/- 0.04K, 21.38 +/- 0.02 kJ mol(-1) and 59.61 +/- 0.05 J K-1 mol(-1), respectively, from fractional melting experiments. The thermodynamic function data relative to the reference temperature (298.15 K) were calculated based on the heat capacities measurements in the temperature range from 80 to 380 K. The thermal stability of the compound was further investigated by DSC and TG. From the DSC curve an intensive exothermic peak assigned to the thermal decomposition of the compound was observed in the range of 445-590 K with the peak temperature of 505 K. Subsequently, a slow exothermic effect appears when the temperature is higher than 590 K, which is probably due to the further decomposition of the compound. The TG curve indicates the mass loss of the sample starts at about 440K, which corresponds to the decomposition of the sample. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Carboxin was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from 79 to 380K. The melting point, molar enthalpy (Delta(fus)H(m)) and entropy (Delta(fus)S(m)) of fusion of this compound were determined to be 365.29 +/- 0.06K, 28.193 +/- 0.09 kJ mol(-1) and 77.180 +/- 0.02 J mol(-1) K-1, respectively. The purity of the compound was determined to be 99.55 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The thermal stability of the compound was further investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The DSC curve indicates that the sample starts to decompose at ca. 290degreesC with the peak temperature at 292.7degreesC. The TG-DTG results demonstrate the maximum mass loss rate occurs at 293degreesC corresponding to the maximum decomposition rate. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Self-assembled behavior of T-shaped rod-coil block copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. Compared with rod-coil diblock copolymers with the anchor point positioned at one end, the copolymers with the anchor point at the middle of the rod exhibit significantly different phase behaviors. When the rod volume fraction is low, the steric hindrance of the lateral coils prevents the rods stacking into strip or micelle as that in rod-coil diblock copolymers. The competition between interfacial energy and entropy results in the formation of lamellar structures and the increasing thickness of the lamellar layer with increasing rod volume fraction.
Resumo:
Real-space self-consistent field theory (SCFT) is employed to study the effect of solvent molecular size on the self-assembly of amphiphilic diblock copolymer in selective solvent. The phase diagrams in wide ranges of interaction parameters and solvent molecular size were obtained in present study. The results indicate that the solvent molecular size is a key factor that determines the self-assembly of amphiphilic diblock copolymer. The self-assembled morphology changes from circle-like micelle to line-like micelle, then to loop-like micelle by decreasing the solvent molecular size in a wide range of solvent selectivity. We analyze and discuss this change in terms of the solvent solubility and the entropy contribution.
Resumo:
The wettability of thin poly(methyl methacrylate) (PMMA) films on a silicon wafer with a native oxide layer exposed to solvent vapors is dependent on the solvent properties. In the nonsolvent vapor, the film spread on the substrate with some protrusions generated on the film surface. In the good solvent vapor, dewetting happened. A new interface formed between the anchored PMMA chains and the swollen upper part of the film. Entropy effects caused the upper movable chains to dewet on the anchored chains. The rim instability depended on the surface tension of solvent (i.e., the finger was generated in acetone vapor (gamma(acetone) = 24 mN/m), not in dioxane vapor (gamma(dioxane) = 33 mN/m)). The spacing (lambda) that grew as an exponential function of film thickness h scaled as similar to h(1.31) whereas the mean size (D) of the resulting droplets grew linearly with h.
Resumo:
The calculations presented in this paper are based on the Sanchez-Lacombe (SL) lattice fluid theory. The interaction energy parameter, g*(12)/k, required in this approach was obtained by fitting the cloud points of polystyrene (PS) /methyleyclohexane (MCH) polymer solutions under pressure. The SL lattice fluid theory was used to calculate the spinodals, the binodals, and the Flory-Huggins (FH) interaction parameter of the solutions. The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well. However, the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions. Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.
Resumo:
Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP, HA) and di-(2ethylhexyl)-2-ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE (III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A(2).B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change Delta G (-17.06kJmol(-1)), enthalpy change Delta H (-35.08kjmol(-1)) and entropy change Delta S (-60.47JK(-1)mol(-1)) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements.
Resumo:
Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.
Resumo:
We report observation of inverted phases consisting of spheres and/or cylinders of the majority fraction block in a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer by solvent-induced order-disorder phase transition (ODT). The SBS sample has a molecular weight of 140K Da and a polystyrene (PS) weight fraction of 30%. Tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were utilized to study the copolymer microstructure of a set of solution-cast SBS films dried with different solvent evaporation rates, R. The control with different R leads to kinetic frozen-in of microstructures corresponding to a different combination parameter chi (eff)Z of the drying films (where chi (eff) is the effective interaction parameter of the polymer solution in the cast film and Z the number of "blobs" of size equal to the correlation length one block copolymer chain contains), for which faster evaporation rates result in microstructures of smaller chi (eff)Z. As R was decreased from rapid evaporations (similar to0.1 mL/h), the microstructure evolved from a totally disordered one sequentially to inverted phases consisting of spheres and then cylinders of polybutadiene (PB) in a PS matrix and finally reached the equilibrium phase, namely cylinders of PS in a PB matrix. We interpret the formation of inverted phases as due to the increased relative importance of entropy as chi (eff)Z is decreased, which may dominate the energy penalty for having a bigger interfacial area between the immiscible blocks in the inverted phases.
Resumo:
Nanometre-sized poly(vinylidene fluoride) (PVDF) particle domains in a confined space were obtained by blending PVDF with excess poly(methyl methacrylate) (PMMA). When these particles were small enough they showed beta -form structure, which was different from the structure of bigger particles or PVDF bulk. However, the beta -form was thermodynamically metastable because it could eventually be transformed to a more stable phase by annealing at a certain temperature. Larger particle domains were of identical phase to the bulk, indicating that small size favours the formation of the beta -form. (C) 2000 Society of Chemical Industry.
Resumo:
Single chain and pauci chain single crystals of gutta percha in nanometer size were prepared by a dilute solution spraying method. A new crystal modification of gutta percha was found. The unit cell of the new modification of gutta percha was determined by electron diffraction crystal structure analysis to be a hexagonal form with cell dimensions: a = b = 0.695 nm, c = 0.661 nm, alpha = beta = 90 degrees, gamma =120 degrees; the space group is P6. The molecular packing in the unit cell was determined by computer modelling with Cerius(2) 2.0 software. (C) 1998 Elsevier Science Ltd. All rights reserved.