988 resultados para Emission properties
Resumo:
The effects of solvents on different chemical phenomena, including reactivity, spectroscopic data, and swelling of biopolymers can be rationalized by use of solvatochromic probes, substances whose UV-vis spectra, absorption, or emission are sensitive to the properties of the medium. Thermo-solvatochromism refers to the effect of temperature on solvatochromism. The study of both phenomena sheds light on the relative importance of the factors that contribute to solvation, namely, properties of the probe, those of the solvent (acidity, basicity, dipolarity/polarizability, and lipophilicity), and the temperature. Solvation in binary solvent mixtures is complex because of ""preferential solvation"" of the probe by some component of the mixture. A recently introduced solvent exchange model is based on the presence in the binary solvent mixture of the organic component (molecular solvent or ionic liquid), S, water, W, and a 1:1 hydrogen-bonded species (S-W). Solvation by the latter is more efficient than by its precursor solvents, due to probe-solvent hydrogen-bonding and hydrophobic interactions; dimethyl sulfoxide (DMSO)-W is an exception. Solvatochromic data are employed in order to explain apparently disconnected phenomena, namely, medium effect on the pH-independent hydrolysis of esters, (1)H NMR data of water-ionic liquid (IL) mixtures, and the swelling of cellulose.
Resumo:
The objectives of this study were to characterise four essential oils (EO) chemically and to evaluate their effect on ruminal fermentation and methane emission in vitro. The investigated EO were isolated from Achillea santolina, Artemisia judaica, Schinus terebinthifolius and Mentha microphylla, and supplemented at four levels (0, 25, 50 and 75 l) to 75ml of buffered rumen fluid plus 0.5 g of substrate. The main components of the EO were piperitone (49.1%) and camphor (34.5%) in A. judaica, 16-dimethyl 15-cyclooactdaiene (60.5%) in A. santolina, piperitone oxide (46.7%) and cis-piperitone oxide (28%) in M. microphylla, and -muurolene (45.3%) and -thujene (16.0%) in S. terebinthifolius. The EO from A. santolina (at 25 and 50 l), and all levels of A. judaica increased the gas production significantly, but S. terebinthifolius (at 50 and 75 l), A. santolina (at 75 l) and all levels of M. microphylla decreased the gas production significantly in comparison with the control. The highest levels of A. santolina and A. judaica, and all doses from M. microphylla EO inhibited the methane production along with a significant reduction in true degradation of dry matter and organic matter, protozoa count and NH3-N concentration. It is concluded that the evaluated EO have the potential to affect ruminal fermentation efficiency and the EO from M. microphylla could be a promising methane mitigating agent.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A procedure for simultaneous separation/preconcentration of copper. zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-I 14). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1). 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0. and 6.3 mu g L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. (C) 2009 Published by Elsevier B.V.
Resumo:
Biomass burning is an important source of atmospheric Particulate Matter (PM) in Brazil: the burning of forests in the northwest and of sugar cane plantations in the southeast are important examples. The objective of this work is the measurement of the PM emission profile of burning of sugar cane and other characteristic vegetative burning in the region of Sao Carlos-SP/Brazil. Samples of PM(10) and PM(2.5) were collected in different conditions, including small laboratory controlled burnings and real ones. The samples were analysed by X-Ray Fluorescence (XRF) and 14 chemical elements quantified. t-Student tests were performed to compare the obtained profiles, using as a reference a vegetative burn profile taken from the USEPA data bank SPECIATE. All measured profiles presented significant amounts of Cl and K, which are confirmed as tracers of sugar cane foliage burning.
Resumo:
Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Inductively coupled plasma optical emission spectrometers (ICP DES) allow fast simultaneous measurements of several spectral lines for multiple elements. The combination of signal intensities of two or more emission lines for each element may bring such advantages as improvement of the precision, the minimization of systematic errors caused by spectral interferences and matrix effects. In this work, signal intensities for several spectral lines were combined for the determination of Al, Cd, Co, Cr, Mn, Pb, and Zn in water. Afterwards, parameters for evaluation of the calibration model were calculated to select the combination of emission lines leading to the best accuracy (lowest values of PRESS-Predicted error sum of squares and RMSEP-Root means square error of prediction). Limits of detection (LOD) obtained using multiple lines were 7.1, 0.5, 4.4, 0.042, 3.3, 28 and 6.7 mu g L(-1) (n = 10) for Al, Cd. Co, Cr, Mn, Pb and Zn, respectively, in the presence of concomitants. On the other hand, the LOD established for the most intense emission line were 16. 0.7, 8.4, 0.074. 23, 26 and 9.6 mu g L(-1) (n = 10) for these same elements in the presence of concomitants. The accuracy of the developed procedure was demonstrated using water certified reference material. The use of multiple lines improved the sensitivity making feasible the determination of these analytes according to the target values required for the current environmental legislation for water samples and it was also demonstrated that measurements in multiple lines can also be employed as a tool to verify the accuracy of an analytical procedure in ICP DES. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) microvessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 mu L The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe. Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2(4-1) fractional factorial design: 650 W microwave power, 7 min digestion time, 50 mu L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Superficial bottom samples were collected near diffusers of domestic sewage submarine outfalls at Araca and Saco da Capela, Sao Sebastiao Channel, Brazil. The goal of this study was to investigate the distribution and composition of live benthic foraminifera assemblages and integrate the results obtained with geochemical analyses to assess human-induced changes. According to the results obtained no environmental stress was observed near the Saco da Capela submarine outfall diffusers. The foraminifera assemblage is characterised by species typical of highly hydrodynamic environments, with well-oxygenated bottom waters and low nutrient contents. In contrast, near Araca submarine outfall, organic enrichment was denoted by high phosphorus, sulphur and, to a lesser extent, total organic carbon content. Harmful influences on foraminifera could be identified by low richness and specific diversity, as well as the predominance of detritivore feeder species, which are associated with higher organic matter flux and low oxygen in the interstitial pore water. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Diabetes mellitus (DM) is a disease that affects a large number of people, and the number of problems associated with the disease has been increasing in the past few decades. These problems include cardiovascular disorders, blindness and the eventual need to amputate limbs. Therefore, the quality of life for people living with DM is less than it is for healthy people. In several cases, metabolic syndrome (MS), which can be considered a disturbance of the lipid metabolism, is associated with DM. In this work, two drugs used to treat DM, pioglitazone and rosiglitazone, were studied using theoretical methods, and their molecular properties were related to the biological activity of these drugs. From the results, it was possible to correlate the properties of each substance-particularly electronic properties-with the biological interactions that are linked to their pharmacological effects. These results suggest that there are future prospects for designing or developing new drugs based on the correlation between theoretical and experimental properties.
Resumo:
Background: Depression is a common contributor to suffering and disability in people with chronic pain. However, the assessment of depression in this population has been hampered by the presence of a number of somatic symptoms that are shared between chronic pain, treatment side-effects and traditional concepts of depression. As a result, the use of depression measures that do not contain somatic items has been encouraged. Objective: This study examined the psychometric properties of the Depression sub-scale of the Depression Anxiety and Stress Scales (DASS) in a Brazilian chronic pain patient population. Method: Data on a number of measures were collected from 348 participants attending pain facilities. Results: Principal components and exploratory factor analyses indicated the presence of only one factor. Item analyses indicated adequate item-scale correlations. The Cronbach alpha was .96, which suggests an excellent internal consistency. Conclusion: The DASS-Depression scale has adequate psychometric properties and its further use with Brazilian chronic pain populations can now be supported. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
One mannanase and one of the three xylanases produced by Ceriporiopsis subvermispora grown on Pinus taeda wood chips were characterized. A combination of ion exchange chromatography and SDS-PAGE data revealed the existence of a high-molecular-weight mannanase of 150 kDa that was active against galactoglucomannan and xylan, Its activity was optimal at pH 4.5. The K(m) value with galactoglucomannan as substrate was 0.50 mg ml (1). One xylanase with molecular mass of 79 kDa was also purified and characterized. Its activity was optimal at 60 degrees C and pH 8.0. Its K(m) value with birchwood xylan as substrate was 1.65 mg ml (1). Both the mannanase and the 79 kDa xylanase displayed relatively high activity on carboxymethyl cellulose. The sensitivity of the xylanase and mannanase to various salts was evaluated. None of the tested salts inhibited the xylanase, but Mn(+2), Fe(+3), and Cu(+2) were strong inhibitors for the mannanase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Natural rubber (NR) is a raw material largely used by the modern industry; however, it is common that chemical modifications must be made to NR in order to improve properties such as hydrophobicity or mechanical resistance. This work deals with the correlation of properties of NR modified with dimethylaminoethylmethacrylate or methylmethacrylate as grafting agents. Dynamic-mechanical behavior and stress/strain relations are very important properties because they furnish essential characteristics of the material such as glass transition temperature and rupture point. These properties are concerned with different physical principles; for this reason, normally they are not related to each other. This work showed that they can be correlated by artificial neural networks (ANN). So, from one type of assay, the properties that as a rule only could be obtained from the other can be extracted by ANN correlation. POLYM. ENG. SCI., 49:499-505, 2009. (c) 2009 Society of Plastics Engineers
Resumo:
Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.