992 resultados para Electrophoresis, Polyacrylamide Gel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analysis of restriction fragment length polymorphism (RFLP) profiles derived from digestion of polymerase chain reaction (PCR) products of the ribosomal 18S from Trypanosoma cruzi yields a typical `riboprint' profile that can vary intraspecifically. A selection of 21 stocks of T. cruzi and three outgroup taxa: T. rangeli, T. conorhini and Leishmania braziliensis were analysed by riboprinting to assess divergence within and between taxa. T. rangeli, T. conorhini and L. braziliensis could be easily differentiated from each other and from T. cruzi. Phenetic analysis of PCR-RFLP profiles indicated that, with one or two exceptions, stocks of T. cruzi could be broadly partitioned into two groups that formally corresponded to T. cruzi I and T. cruzi II respectively. To test if ribosomal 18S sequences were homogeneous within each taxon, gradient gel electrophoresis methods were employed utilising either chemical or temperature gradients. Upon interpretation of the melting profiles of riboprints and a section of the 18S independently amplified by PCR, there would appear to be at least two divergent 18S types present within T. cruzi. Heterogeneity within copies of the ribosomal 18S within a single genome has therefore been demonstrated and interestingly, this dimorphic arrangement was also present in the outgroup taxa. Presumably the ancestral duplicative event that led to the divergent 18S types preceded that of speciation within this group. These divergent 18S paralogues may have, or had, different functional pressures or rates of molecular evolution. Whether or not these divergent types are equally transcriptionally active throughout the life cycle, remain to be assessed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The choice of sample preparation protocol is a critical influential factor for isoelectric focusing which in turn affects the two-dimensional gel result in terms of quality and protein species distribution. The optimal protocol varies depending on the nature of the sample for analysis and the properties of the constituent protein species (hydrophobicity, tendency to form aggregates, copy number) intended for resolution. This review explains the standard sample buffer constituents and illustrates a series of protocols for processing diverse samples for two-dimensional gel electrophoresis, including hydrophobic membrane proteins. Current methods for concentrating lower abundance proteins, by removal of high abundance proteins, are also outlined. Finally, since protein staining is becoming increasingly incorporated into the sample preparation procedure, we describe the principles and applications of current (and future) pre-electrophoretic labelling methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group B streptococci (GBS) infections occur worldwide. Although serotyping has been used for epidemiologic purposes, this does not accurately characterize enough members of a genetically heterogeneous bacterial population. The aims of this work were to evaluate the genetic diversity of 45 type Ia GBS strains isolated in Brazil by pulsed-field gel electrophoresis as well as to evaluate antimicrobial susceptibility profiles and identify virulence genes. Twenty-four strains were assigned to cluster A. All strains under study contained the hylB and scpB genes. The bca gene was detected in only 10 strains and none of the streptococci carried the bac gene. Thirty-nine strains were resistant to tetracycline.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epidemiology of urinary tract infections (UTI) by Staphylococcus saprophyticus has not been fully characterised and strain typing methods have not been validated for this agent. To evaluate whether epidemiological relationships exist between clusters of pulsed field gel-electrophoresis (PFGE) genotypes of S. saprophyticus from community-acquired UTI, a cross-sectional surveillance study was conducted in the city of Rio de Janeiro, Brazil. In total, 32 (16%) female patients attending two walk-in clinics were culture-positive for S. saprophyticus. Five PFGE clusters were defined and evaluated against epidemiological data. The PFGE clusters were grouped in time, suggesting the existence of community point sources of S. saprophyticus. From these point sources, S. saprophyticus strains may spread among individuals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results:The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions: Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Differential protein labeling with 2-DE separation is an effective method for distinguishing differences in the protein composition of two or more protein samples. Here, we report on a sensitive infrared-based labeling procedure, adding a novel tool to the many labeling possibilities. Defined amounts of newborn and adult mouse brain proteins and tubulin were exposed to maleimide-conjugated infrared dyes DY-680 and DY-780 followed by 1- and 2-DE. The procedure allows amounts of less than 5 microg of cysteine-labeled protein mixtures to be detected (together with unlabeled proteins) in a single 2-DE step with an LOD of individual proteins in the femtogram range; however, co-migration of unlabeled proteins and subsequent general protein stains are necessary for a precise comparison. Nevertheless, the most abundant thiol-labeled proteins, such as tubulin, were identified by MS, with cysteine-containing peptides influencing the accuracy of the identification score. Unfortunately, some infrared-labeled proteins were no longer detectable by Western blots. In conclusion, differential thiol labeling with infrared dyes provides an additional tool for detection of low-abundant cysteine-containing proteins and for rapid identification of differences in the protein composition of two sets of protein samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymerase chain reaction (PCR) with JB1 or REP consensus oligonucleotides and pulsed field gel electrophoresis (PFGE) were used to study genomic DNA extracted from 31 strains of enterococci. Eleven ATCC strains, representative of 11 species of Enterococcus, were initially tested by JB1-PCR, revealing that Enterococcus malodoratus and Enterococcus hirae presented identical banding patterns. Eight Enterococcus faecium isolates from Stanford University and 12 from São Paulo Hospital were studied by JB1-PCR, REP-PCR 1/2R and PFGE. Among the isolates from Stanford University, 5 genotypes were defined by JB1-PCR, 7 by REP-PCR 1/2R and 4 by PFGE. Among the isolates from São Paulo Hospital, 9 genotypes were identified by JB1-PCR, 6 by REP-PCR and 5 by PFGE. The three methods identified identical genotypes, but there was not complete agreement among them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blue native polyacrylamide electrophoresis (BN-PAGE) is a technique developed for the analysis of membrane complexes. Combined with histochemical staining, it permits the analysis and quantification of the activities of mitochondrial oxidative phosphorylation enzymes using whole muscle homogenates, without the need to isolate muscle mitochondria. Mitochondrial complex activities were measured by emerging gels in a solution containing all specific substrates for NADH dehydrogenase and cytochrome c oxidase enzymes (complexes I and IV, respectively) and the colored bands obtained were measured by optique densitometry. The objective of the present study was the application of BN-PAGE colorimetric staining for enzymatic characterization of mitochondrial complexes I and IV in rat muscles with different morphological and biochemical properties. We also investigated these activities at different times after acute exercise of rat soleus muscle. Although having fewer mitochondria than oxidative muscles, white gastrocnemius muscle presented a significantly higher activity (26.7 ± 9.5) in terms of complex I/V ratio compared to the red gastrocnemius (3.8 ± 0.65, P < 0.05) and soleus (9.8 ± 0.9, P < 0.001) muscles. Furthermore, the complex IV/V ratio of white gastrocnemius muscle was always significantly higher when compared to the other muscles. Ninety-five minutes of exhaustive physical exercise induced a decrease in complex I/V and complex IV/V ratios after all resting times (0, 3 and 6 h) compared to control (P < 0.05), probably reflecting the oxidative damage due to increasing free radical production in mitochondria. These results demonstrate the possible and useful application of BN-PAGE-histochemical staining to physical exercise studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La digestion enzymatique des protéines est une méthode de base pour les études protéomiques ainsi que pour le séquençage en mode « bottom-up ». Les enzymes sont ajoutées soit en solution (phase homogène), soit directement sur le gel polyacrylamide selon la méthode déjà utilisée pour l’isolation de la protéine. Les enzymes protéolytiques immobilisées, c’est-à-dire insolubles, offrent plusieurs avantages tels que la réutilisation de l’enzyme, un rapport élevé d’enzyme-sur-substrat, et une intégration facile avec les systèmes fluidiques. Dans cette étude, la chymotrypsine (CT) a été immobilisée par réticulation avec le glutaraldehyde (GA), ce qui crée des particules insolubles. L’efficacité d’immobilisation, déterminée par spectrophotométrie d’absorbance, était de 96% de la masse totale de la CT ajouté. Plusieurs différentes conditions d’immobilisation (i.e., réticulation) tels que la composition/pH du tampon et la masse de CT durant la réticulation ainsi que les différentes conditions d’entreposage tels que la température, durée et humidité pour les particules GA-CT ont été évaluées par comparaison des cartes peptidiques en électrophorèse capillaire (CE) des protéines standards digérées par les particules. Les particules de GA-CT ont été utilisés pour digérer la BSA comme exemple d’une protéine repliée large qui requit une dénaturation préalable à la digestion, et pour digérer la caséine marquée avec de l’isothiocyanate de fluorescéine (FITC) comme exemple d’un substrat dérivé afin de vérifier l’activité enzymatique du GA-CT dans la présence des groupements fluorescents liés au substrat. La cartographie peptidique des digestions par les particules GA-CT a été réalisée par CE avec la détection par absorbance ultraviolet (UV) ou fluorescence induite par laser. La caséine-FITC a été, en effet, digérée par GA-CT au même degré que par la CT libre (i.e., soluble). Un microréacteur enzymatique (IMER) a été fabriqué par immobilisation de la CT dans un capillaire de silice fondu du diamètre interne de 250 µm prétraité avec du 3-aminopropyltriéthoxysilane afin de fonctionnaliser la paroi interne avec les groupements amines. Le GA a été réagit avec les groupements amine puis la CT a été immobilisée par réticulation avec le GA. Les IMERs à base de GA-CT étaient préparé à l’aide d’un système CE automatisé puis utilisé pour digérer la BSA, la myoglobine, un peptide ayant 9 résidus et un dipeptide comme exemples des substrats ayant taille large, moyenne et petite, respectivement. La comparaison des cartes peptidiques des digestats obtenues par CE-UV ou CE-spectrométrie de masse nous permettent d’étudier les conditions d’immobilisation en fonction de la composition et le pH du tampon et le temps de réaction de la réticulation. Une étude par microscopie de fluorescence, un outil utilisé pour examiner l’étendue et les endroits d’immobilisation GA-CT dans l’IMER, ont montré que l’immobilisation a eu lieu majoritairement sur la paroi et que la réticulation ne s’est étendue pas si loin au centre du capillaire qu’anticipée.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work focuses on the analysis of the influence of environment on the relative biological effectiveness (RBE) of carbon ions on molecular level. Due to the high relevance of RBE for medical applications, such as tumor therapy, and radiation protection in space, DNA damages have been investigated in order to understand the biological efficiency of heavy ion radiation. The contribution of this study to the radiobiology research consists in the analysis of plasmid DNA damages induced by carbon ion radiation in biochemical buffer environments, as well as in the calculation of the RBE of carbon ions on DNA level by mean of scanning force microscopy (SFM). In order to study the DNA damages, besides the common electrophoresis method, a new approach has been developed by using SFM. The latter method allows direct visualisation and measurement of individual DNA fragments with an accuracy of several nanometres. In addition, comparison of the results obtained by SFM and agarose gel electrophoresis methods has been performed in the present study. Sparsely ionising radiation, such as X-rays, and densely ionising radiation, such as carbon ions, have been used to irradiate plasmid DNA in trishydroxymethylaminomethane (Tris buffer) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES buffer) environments. These buffer environments exhibit different scavenging capacities for hydroxyl radical (HO0), which is produced by ionisation of water and plays the major role in the indirect DNA damage processes. Fragment distributions have been measured by SFM over a large length range, and as expected, a significantly higher degree of DNA damages was observed for increasing dose. Also a higher amount of double-strand breaks (DSBs) was observed after irradiation with carbon ions compared to X-ray irradiation. The results obtained from SFM measurements show that both types of radiation induce multiple fragmentation of the plasmid DNA in the dose range from D = 250 Gy to D = 1500 Gy. Using Tris environments at two different concentrations, a decrease of the relative biological effectiveness with the rise of Tris concentration was observed. This demonstrates the radioprotective behavior of the Tris buffer solution. In contrast, a lower scavenging capacity for all other free radicals and ions, produced by the ionisation of water, was registered in the case of HEPES buffer compared to Tris solution. This is reflected in the higher RBE values deduced from SFM and gel electrophoresis measurements after irradiation of the plasmid DNA in 20 mM HEPES environment compared to 92 mM Tris solution. These results show that HEPES and Tris environments play a major role on preventing the indirect DNA damages induced by ionising radiation and on the relative biological effectiveness of heavy ion radiation. In general, the RBE calculated from the SFM measurements presents higher values compared to gel electrophoresis data, for plasmids irradiated in all environments. Using a large set of data, obtained from the SFM measurements, it was possible to calculate the survive rate over a larger range, from 88% to 98%, while for gel electrophoresis measurements the survive rates have been calculated only for values between 96% and 99%. While the gel electrophoresis measurements provide information only about the percentage of plasmids DNA that suffered a single DSB, SFM can count the small plasmid fragments produced by multiple DSBs induced in a single plasmid. Consequently, SFM generates more detailed information regarding the amount of the induced DSBs compared to gel electrophoresis, and therefore, RBE can be calculated with more accuracy. Thus, SFM has been proven to be a more precise method to characterize on molecular level the DNA damage induced by ionizing radiations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes. Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes, Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DIGE is a protein labelling and separation technique allowing quantitative proteomics of two or more samples by optical fluorescence detection of differentially labelled proteins that are electrophoretically separated on the same gel. DIGE is an alternative to quantitation by MS-based methodologies and can circumvent their analytical limitations in areas such as intact protein analysis, (linear) detection over a wide range of protein abundances and, theoretically, applications where extreme sensitivity is needed. Thus, in quantitative proteomics DIGE is usually complementary to MS-based quantitation and has some distinct advantages. This review describes the basics of DIGE and its unique properties and compares it to MS-based methods in quantitative protein expression analysis.