984 resultados para Electromyographic fatigue threshold


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of impulse current on the fish at a particular impulse rate and voltage depends on the size and kind of the fish. It is directly proportional to the temperature and inversely proportional to the conductivity of the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The threshold body voltage (voltage gradient between head and tail) required for first reaction, electro-taxis and electro-narcosis depended upon species, conductivity of the fish body, nature of current and wave shape. Larger fishes showed first reaction at a lower body voltage than smaller ones. All the three reactions were dependent on the accommodation of nerves to the electrical field and subsequent fatigue of the fishes. No significant change was observed in the period of narcosis and recovery after repeated stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relevance of the effective stress intensity range to crack growth is considered for constant and for variable amplitude loading. The accelerated and retarded growth associated with simple programmed loadings is reported for two steels and an aluminium alloy. The load interaction effects are due to several competing mechanisms, and not due to the single, popular mechanism of crack closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vast body of experimental data has been accumulated on the constant amplitude crack growth response of structural metals in moist laboratory air. Usually the data is presented as plots of crack growth rate, da/dN, against stress intensity range, DELTA K. In order to extrapolate this data to fatigue crack growth in more active or more inert environments, to crack growth under variable amplitude loading, or to crack growth under multi-axial or mixed mode loading, the mechanisms of crack advance and crack closure should be considered. This paper briefly reviews the crack closure phenomenon and discusses the dominant causes of accelerated and retarded growth under changes in environment or type of loading. It is argued that simple constant amplitude data is often surprisingly accurate when used to predict crack growth in more complex situations. However, there are some cases where constant amplitude data lead to dangerously non-conservative predictions of fatigue life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The threshold current densities required for first reaction, galvanotaxis and galvanonarcosis of fish depended upon species, length of the body, conductivity of water, nature of current and frequency of impulses. The threshold values and their ratios decreased with increase in length of fish. With rise in conductivity of water in the ratio of 1:4:13, these values increased in the ratio 1: 2:5. Impulse D. C was superior to continuous D. C and the threshold values of current densities for different reactions of fish decreased with rise in impulse frequency reaching minimum at an impulse frequency of 48/sec. Among Salmo irideus, ldus melanotus and Cyprinus carpio, the first one was affected earlier and required minimum current densities to exhibit the reactions, while the last one showed similar reactions only at higher current densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The threshold current densities and voltage tensions (body voltages) between the head and tail for bringing about distinct reactions in Salmo irideus, Cyprinus Carpio, Tinea tinca, Gasterosteus aculeatus and Salmo fario were studied. In C. carpio and T. tinca, absolute current densities required decreased with increase in length of fish. Threshold current densities for different reactions of fish increased with rise in water temperature and conductivity of surrounding medium except in case of T. tinca where low current densities were sufficient in higher conductivity of water. Impulse D.C. was superior to continuous D.C. Better effect was noticed in fishes in lower current densities when their bodies were parallel to the lines of current conduction.