889 resultados para Electrical power system
Resumo:
Thermally driven liquid-desiccant air-conditioners (LDAC) are a proven but still developing technology. LDACs can use a solar thermal system to reduce the operational cost and environmental impact of the system by reducing the amount of fuel (e.g. natural gas, propane, etc.) used to drive the system. LDACs also have a key benefit of being able to store energy in the form of concentrated desiccant storage. TRNSYS simulations were used to evaluate several different methods of improving the thermal and electrical coefficients of performance (COPt and COPe) and the solar fraction (SF) of a LDAC. The study analyzed a typical June to August cooling season in Toronto, Ontario. Utilizing properly sized, high-efficiency pumps increased the COPe to 3.67, an improvement of 55%. A new design, featuring a heat recovery ventilator on the scavenging-airstream and an energy recovery ventilator on the process-airstream, increased the COPt to 0.58, an improvement of 32%. This also improved the SF slightly to 54%, an increase of 8%. A new TRNSYS TYPE was created to model a stratified desiccant storage tank. Different volumes of desiccant were tested with a range of solar array system sizes. The largest storage tank coupled with the largest solar thermal array showed improvements of 64% in SF, increasing the value to 82%. The COPe was also improved by 17% and the COPt by 9%. When combining the heat recovery systems and the desiccant storage systems, the simulation results showed a 78% increase in COPe and 30% increase in COPt. A 77% improvement in SF and a 17% increase in total cooling rate were also predicted by the simulation. The total thermal energy consumed was 10% lower and the electrical consumption was 34% lower. The amount of non-renewable energy needed from the natural gas boiler was 77% lower. Comparisons were also made between LDACs and vapour-compression (VC) systems. Dependent on set-up, LDACs provided higher latent cooling rates and reduced electrical power consumption. Negatively, a thermal input was required for the LDAC systems but not for the VC systems.
Resumo:
Due to the growing concerns associated with fossil fuels, emphasis has been placed on clean and sustainable energy generation. This has resulted in the increase in Photovoltaics (PV) units being integrated into the utility system. The integration of PV units has raised some concerns for utility power systems, including the consequences of failing to detect islanding. Numerous methods for islanding detection have been introduced in literature. They can be categorized into local methods and remote methods. The local methods are categorically divided into passive and active methods. Active methods generally have smaller Non-Detection Zone (NDZ) but the injecting disturbances will slightly degrade the power quality and reliability of the power system. Slip Mode Frequency Shift Islanding Detection Method (SMS IDM) is an active method that uses positive feedback for islanding detection. In this method, the phase angle of the converter is controlled to have a sinusoidal function of the deviation of the Point of Common Coupling (PCC) voltage frequency from the nominal grid frequency. This method has a non-detection zone which means it fails to detect islanding for specific local load conditions. If the SMS IDM employs a different function other than the sinusoidal function for drifting the phase angle of the inverter, its non-detection zone could be smaller. In addition, Advanced Slip Mode Frequency Shift Islanding Detection Method (Advanced SMS IDM), which has been introduced in this thesis, eliminates the non-detection zone of the SMS IDM. In this method the parameters of SMS IDM change based on the local load impedance value. Moreover, the stability of the system is investigated by developing the dynamical equations of the system for two operation modes; grid connected and islanded mode. It is mathematically proven that for some loading conditions the nominal frequency is an unstable point and the operation frequency slides to another stable point, while for other loading conditions the nominal frequency is the only stable point of the system upon islanding occurring. Simulation and experimental results show the accuracy of the proposed methods in detection of islanding and verify the validity of the mathematical analysis.
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.
Resumo:
A grid-connected DFIG for wind power generation can affect power system small-signal angular stability in two ways: by changing the system load flow condition and dynamically interacting with synchronous generators (SGs). This paper presents the application of conventional method of damping torque analysis (DTA) to examine the effect of DFIG’s dynamic interactions with SGs on the small-signal angular stability. It shows that the effect is due to the dynamic variation of power exchange between the DFIG and power system and can be estimated approximately by the DTA. Consequently, if the DFIG is modelled as a constant power source when the effect of zero dynamic interactions is assumed, the impact of change of load flow brought about by the DFIG can be determined. Thus the total effect of DFIG can be estimated from the result of DTA added on that of constant power source model. Applications of the DTA method proposed in the paper are discussed. An example of multi-machine power systems with grid-connected DFIGs are presented to demonstrate and validate the DTA method proposed and conclusions obtained in the paper.
Resumo:
This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.
Resumo:
The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.
Resumo:
Studies have shown that large geographical spreading can reduce the wind power variability and smooth production. It is frequently assumed that storage and interconnection can manage wind power variability and are totally flexible. However, constraints do exist. In the future more and more electricity will be provided by renewable energy sources and more electricity interconnectors will be built between European Union (EU) countries, as outlines in many of the Projects of Common Interests. It is essential to understand the correlation of wind generation throughout Europe considering power system constraints. In this study the spatial and temporal correlation of wind power production across several countries is examined in order to understand how “the wind ‘travels’ across Europe”. Three years of historical hourly wind power generation from ten EU countries is analysed to investigate the geographic diversity and time scales influence on correlation of wind power variations. Results are then compared with two other studies and show similar general characteristics of correlation between EU country pairs to identify opportunities for storage optimisation, power system operations, and trading.
Resumo:
The renewable energy sources (RES) will play a vital role in the future power needs in view of the increasing demand of electrical energy and depletion of fossil fuel with its environmental impact. The main constraints of renewable energy (RE) generation are high capital investment, fluctuation in generation and requirement of vast land area. Distributed RE generation on roof top of buildings will overcome these issues to some extent. Any system will be feasible only if it is economically viable and reliable. Economic viability depends on the availability of RE and requirement of energy in specific locations. This work is directed to examine the economic viability of the system at desired location and demand.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.
Resumo:
A Sociedade da Água de Luso, S.A., localizada no concelho de Mealhada, é uma empresa do setor do engarrafamento de águas minerais naturais, de nascente e de consumo humano. Esta realiza as suas atividades, tendo em consideração a eficiência energética, ao longo do seu processo produtivo. Desta forma, o trabalho desenvolvido teve como objetivo o acompanhamento da implementação do sistema de monitorização e recolha de dados, que posteriormente foi útil na redução dos consumos energéticos (consumo de ar comprimido). Para além disto, também foi proposta uma medida de eficiência energética que visa a redução de energia elétrica na área da iluminação. O sistema de monitorização e recolha de dados e a criação de uma equipa de redução do consumo de ar comprimido permitiram a identificação das áreas de atuação, a monitorização das metas estipuladas no âmbito da equipa e a detecção de anomalias. A medida de eficiência energética aplicada incide na substituição de lâmpadas fluorescentes tubulares T8 por lâmpadas fluorescentes tubulares T5. Assim, a implementação deste sistema e a aplicação das medidas de eficiência energética na rede de ar comprimido no âmbito da equipa permitiram uma redução de 0,03 kWh/hL o que significa uma poupança de 5.600 € em quinze semanas. Ao nível da iluminação as medidas sugeridas permitem uma redução de 8.945 kWh/ano o que corresponde a uma poupança de 1.055 €/ano.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de energia
Resumo:
Power generation from alternative sources is at present the subject of numerous research and development in science and industry. Wind energy stands out in this scenario as one of the most prominent alternative in the generation of electricity, by its numerous advantages. In research works, computer reproduction and experimental behavior of a wind turbine are very suitable tools for the development and study of new technologies and the use of wind potential of a given region. These tools generally are desired to include simulation of mechanical and electrical parameters that directly affect the energy conversion. This work presents the energy conversion process in wind systems for power generation, in order to develop a tool for wind turbine emulation testing experimental, using LabVIEW® software. The purpose of this tool is to emulate the torque developed in an axis wind turbine. The physical setup consists of a three phase induction motor and a permanent magnet synchronous generator, which are evaluated under different wind speed conditions. This tool has the objective to be flexible to other laboratory arrangements, and can be used in other wind power generation structures in real time. A modeling of the wind power system is presented, from the turbine to the electrical generator. A simulation tool is developed using Matlab/Simulink® with the purpose to pre-validate the experiment setup. Finally, the design is implemented in a laboratory setup.
Resumo:
A presente dissertação é o resultado de um estudo realizado entre Março de 2015 e Março de 2016 centrado no tema Eficiência Energética nos Edifícios, no âmbito da Dissertação do 2º ano do Mestrado em Engenharia Eletrotécnica – Sistemas Elétricos de Energia no Instituto Superior de Engenharia do Porto (ISEP). Atualmente, os edifícios são responsáveis por cerca de 40% do consumo de energia na maioria dos países da europa. Energia consumida, principalmente, no aquecimento, arrefecimento e na alimentação de aparelhos elétricos. Os hospitais, como grandes edifícios, são grandes consumidores de energia e, na maioria dos países europeus, situam-se entre os edifícios públicos menos eficientes. Neste contexto, representam um tipo de edifícios cuja atividade apresenta um potencial de poupança energético importante. O tipo de atividade aí desenvolvida, aliada às especificidades do sector da saúde, faz deste tipo de edifícios um alvo de análise e otimização energética bastante apetecível. O presente trabalho passa pelo estudo do potencial para a eficiência energética de um hospital situado na zona do Porto. Foi, inicialmente, efetuado um levantamento das necessidades energéticas, de modo a identificar os sectores prioritários de atuação. Este estudo conta com a análise dos consumos obtidos através do processo de monitorização, substituição da iluminação existente por uma mais eficiente, a instalação de painéis solares para reduzir o consumo destinado às águas quentes sanitárias, a substituição de caldeira a diesel por caldeira a biomassa, substituição de um chiller por um mais eficiente, entre outros. Os consumos registados no hospital em estudo serão comparados com um plano nacional (Eficiência Energética e Hídrica no Sistema Nacional de Saúde), para, desta forma, se perceber quais os consumos do hospital em estudo, quando comparados com outros hospitais.
Resumo:
The focus of this work is the automatic analysis of disturbance records for electrical power generating units. The main proposition is a method based on wavelet transform applied to short-term disturbance records (waveform records). The goal of the method is to detect the time instants of recorded disturbances and extract meaningful information that characterize the faults. The result is a set of representative information of the monitored signals in power generators. This information can be further classified by an expert system (or other classification method) in order to classify the faults and other abnormal operating conditions. The large amount of data produced by digital fault recorders during faults justify the research of methods to assist the analysts in their task of analysing the disturbances. The literature review pointed out the state of the art and possible applications for oscillography records. The review of the COMTRADE standard and wavelet transform underlines the choice of the method for solving the problem. The conducted tests lead to the determination of the best mother wavelet for the segmentation process. The application of the proposed method to five case studies with real oscillographic records confirmed the accuracy and efficiency of the proposed scheme. With this research, the post-operation analysis of occurrences is improved and as a direct result is the reduction of the time that generators are offline.