724 resultados para Effective rainfall


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous factors are associated with poverty and underdevelopment in Africa, including climate variability. Rainfall, and climate more generally, are implicated directly in the United Nations “Millennium Development Goals” to eradicate extreme poverty and hunger, and reduce child mortality and incidence of diseases such as malaria by the target date of 2015. But, Africa is not currently on target to meet these goals. We pose a number of questions from a climate science perspective aimed at understanding this background: Is there a common origin to factors that currently constrain climate science? Why is it that in a continent where human activity is so closely linked to interannual rainfall variability has climate science received little of the benefit that saw commercialization driving meteorology in the developed world? What might be suggested as an effective way for the continent to approach future climate variability and change? We make the case that a route to addressing the challenges of climate change in Africa rests with the improved management of climate variability. We start by discussing the constraints on climate science and how they might be overcome. We explain why the optimal management of activities directly influenced by interannual climate variability (which include the development of scientific capacity) has the potential to serve as a forerunner to engagement in the wider issue of climate change. We show this both from the perspective of the climate system and the institutions that engage with climate issues. We end with a thought experiment that tests the benefits of linking climate variability and climate change in the setting of smallholder farmers in Limpopo Province, South Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses three issues: spatial downscaling, calibration, and combination of seasonal predictions produced by different coupled ocean-atmosphere climate models. It examines the feasibility Of using a Bayesian procedure for producing combined, well-calibrated downscaled seasonal rainfall forecasts for two regions in South America and river flow forecasts for the Parana river in the south of Brazil and the Tocantins river in the north of Brazil. These forecasts are important for national electricity generation management and planning. A Bayesian procedure, referred to here as forecast assimilation, is used to combine and calibrate the rainfall predictions produced by three climate models. Forecast assimilation is able to improve the skill of 3-month lead November-December-January multi-model rainfall predictions over the two South American regions. Improvements are noted in forecast seasonal mean values and uncertainty estimates. River flow forecasts are less skilful than rainfall forecasts. This is partially because natural river flow is a derived quantity that is sensitive to hydrological as well as meteorological processes, and to human intervention in the form of reservoir management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] In many practical situations where spatial rainfall estimates are needed, rainfall occurs as a spatially intermittent phenomenon. An efficient geostatistical method for rainfall estimation in the case of intermittency has previously been published and comprises the estimation of two independent components: a binary random function for modeling the intermittency and a continuous random function that models the rainfall inside the rainy areas. The final rainfall estimates are obtained as the product of the estimates of these two random functions. However the published approach does not contain a method for estimation of uncertainties. The contribution of this paper is the presentation of the indicator maximum likelihood estimator from which the local conditional distribution of the rainfall value at any location may be derived using an ensemble approach. From the conditional distribution, representations of uncertainty such as the estimation variance and confidence intervals can be obtained. An approximation to the variance can be calculated more simply by assuming rainfall intensity is independent of location within the rainy area. The methodology has been validated using simulated and real rainfall data sets. The results of these case studies show good agreement between predicted uncertainties and measured errors obtained from the validation data.