882 resultados para Ecosystem indicators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollinated mass flowering crops are becoming more widespread and there is a need to understand which insects are primarily responsible for the pollination of these crops so conservation measures can be appropriately targeted in the face of pollinator declines. This study used field surveys in conjunction with cage manipulations to identify the relative contributions of different pollinator taxa to the pollination of two widespread flowering crops, field beans and oilseed rape. Flower visiting pollinator communities observed in the field were distinct for each crop; while field beans were visited primarily by a few bumblebee species, multiple pollinator taxa visited oilseed, and the composition of this pollinator community was highly variable spatially and temporally. Neither pollinator community, however, appears to be meeting the demands of crops in our study regions. Cage manipulations showed that multiple taxa can effectively pollinate both oilseed and field beans, but bumblebees are particularly effective bean pollinators. Combining field observations and cage manipulations demonstrated that the pollination demands of these two mass flowering crops are highly contrasting, one would benefit from management to increase the abundance of some key taxa, whilst for the other, boosting overall pollinator abundance and diversity would be more appropriate. Our findings highlight the need for crop specific mitigation strategies that are targeted at conserving specific pollinator taxa (or group of taxa) that are both active and capable of crop pollination in order to reduce pollination deficits and meet the demands of future crop production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enrichment in resource availability theoretically destabilizes predator–prey dynamics (the paradox of enrichment). However, a minor change in the resource stoichiometry may make a prey toxic for the predator, and the presence of toxic prey affects the dynamics significantly. Here, theoretically we explore how, at increased carrying capacity, a toxic prey affects the oscillation or destabilization of predator–prey dynamics, and how its presence influences the growth of the predator as well as that of a palatable prey. Mathematical analysis determines the bounds on the food toxicity that allow the coexistence of a predator along with a palatable and a toxic prey. The overall results demonstrate that toxic food counteracts oscillation (destabilization) arising from enrichment of resource availability. Moreover, our results show that, at increased resource availability, toxic food that acts as a source of extra mortality may increase the abundance of the predator as well as that of the palatable prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mediterranean is an important eco-region, however, it suffers from the lack of common procedures for the management and monitoring of its protected areas sustainability. The INNOVA project addresses this issue by developing a procedure namely PASEMP as well as tools which can assist Protected Areas Managers and responsible authorities to develop and implement a monitoring strategy for their areas. This handbook is proposed as a flexible tool, or a reference text which should be used in combination with the PASEMP guidelines to identify indicators, but also contains guidance on how to implement and report the monitoring strategy results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an on-going debate on the environmental effects of genetically modified crops to which this paper aims to contribute. First, data on environmental impacts of genetically modified (GM) and conventional crops are collected from peer-reviewed journals, and secondly an analysis is conducted in order to examine which crop type is less harmful for the environment. Published data on environmental impacts are measured using an array of indicators, and their analysis requires their normalisation and aggregation. Taking advantage of composite indicators literature, this paper builds composite indicators to measure the impact of GM and conventional crops in three dimensions: (1) non-target key species richness, (2) pesticide use, and (3) aggregated environmental impact. The comparison between the three composite indicators for both crop types allows us to establish not only a ranking to elucidate which crop is more convenient for the environment but the probability that one crop type outperforms the other from an environmental perspective. Results show that GM crops tend to cause lower environmental impacts than conventional crops for the analysed indicators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the “whole life circle” for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper employs a probit and a Markov switching model using information from the Conference Board Leading Indicator and other predictor variables to forecast the signs of future rental growth in four key U.S. commercial rent series. We find that both approaches have considerable power to predict changes in the direction of commercial rents up to two years ahead, exhibiting strong improvements over a naïve model, especially for the warehouse and apartment sectors. We find that while the Markov switching model appears to be more successful, it lags behind actual turnarounds in market outcomes whereas the probit is able to detect whether rental growth will be positive or negative several quarters ahead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting demand and supply activities. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework and using the quarterly US data over 1988-2010, we test the efficacy of several sentiment measures by comparing them with other coincident economic indicators. Overall, our analysis suggests that the sentiment in real estate convey valuable information that can help predict changes in real estate returns. These findings have important implications for investment decisions, from consumers' as well as institutional investors' perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude—from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers—as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This study provides the first large scale analysis of the age at which adolescents in medieval England entered and completed the pubertal growth spurt. This new method has implications for expanding our knowledge of adolescent maturation across different time periods and regions. Methods: In total, 994 adolescent skeletons (10-25 years) from four urban sites in medieval England (AD 900-1550) were analysed for evidence of pubertal stage using new osteological techniques developed from the clinical literature (i.e. hamate hook development, CVM, canine mineralisation, iliac crest ossification, radial fusion). Results: Adolescents began puberty at a similar age to modern children at around 10-12 years, but the onset of menarche in girls was delayed by up to 3 years, occurring around 15 for most in the study sample and 17 years for females living in London. Modern European males usually complete their maturation by 16-18 years; medieval males took longer with the deceleration stage of the growth spurt extending as late as 21 years. Conclusions: This research provides the first attempt to directly assess the age of pubertal development in adolescents during the tenth to seventeenth centuries. Poor diet, infections, and physical exertion may have contributed to delayed development in the medieval adolescents, particularly for those living in the city of London. This study sheds new light on the nature of adolescence in the medieval period, highlighting an extended period of physical and social transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food production in the context of the sustainable management of natural resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims There is potential for altered plant-soil feedback (PSF) to develop in human-modified ecosystems but empirical data to test this idea are limited. Here, we compared the PSF operating in jarrah forest soil restored after bauxite mining in Western Australia with that operating in unmined soil. Methods Native seedlings of jarrah (Eucalyptus marginata), acacia (Acacia pulchella), and bossiaea (Bossiaea ornata) were grown in unmined and restored soils to measure conditioning of chemical and biological properties as compared with unplanted control soils. Subsequently, acacia and bossiaea were grown in soils conditioned by their own or by jarrah seedlings to determine the net PSF. Results In unmined soil, the three plant species conditioned the chemical properties but had little effect on the biological properties. In comparison, jarrah and bossiaea conditioned different properties of restored soil while acacia did not condition this soil. In unmined soil, neutral PSF was observed, whereas in restored soil, negative PSF was associated with acacia and bossiaea. Conclusions Soil conditioning was influenced by soil context and plant species. The net PSF was influenced by soil context, not by plant species and it was different in restored and unmined soils. The results have practical implications for ecosystem restoration after human activities.